These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 12483706)
1. Preparation of epoxy-SiO2 hybrid sol-gel material for bone cement. Yang JM; Shih CH; Chang CN; Lin FH; Jiang JM; Hsu YG; Su WY; See LC J Biomed Mater Res A; 2003 Jan; 64(1):138-46. PubMed ID: 12483706 [TBL] [Abstract][Full Text] [Related]
2. Mechanical properties of acrylic bone cement containing PMMA-SiO2 hybrid sol-gel material. Yang JM; Lu CS; Hsu YG; Shih CH J Biomed Mater Res; 1997; 38(2):143-54. PubMed ID: 9178742 [TBL] [Abstract][Full Text] [Related]
3. A new bioactive bone cement consisting of BIS-GMA resin and bioactive glass powder. Kawanabe K; Tamura J; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S J Appl Biomater; 1993; 4(2):135-41. PubMed ID: 10148600 [TBL] [Abstract][Full Text] [Related]
4. Physicochemical, mechanical, and biological properties of bone cements prepared with functionalized methacrylates. Sabino MA; Ajami D; Salih V; Nazhat SN; Vargas-Coronado R; Cauich-Rodríguez JV; Ginebra MP J Biomater Appl; 2004 Oct; 19(2):147-61. PubMed ID: 15381787 [TBL] [Abstract][Full Text] [Related]
5. Effect of sodium carbonate solution on self-setting properties of tricalcium silicate bone cement. Zhiguang Huan ; Jiang Chang J Biomater Appl; 2008 Nov; 23(3):247-62. PubMed ID: 18667460 [TBL] [Abstract][Full Text] [Related]
6. The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO(2)-CaO nanocomposite. Lee KH; Rhee SH Biomaterials; 2009 Jul; 30(20):3444-9. PubMed ID: 19304322 [TBL] [Abstract][Full Text] [Related]
7. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts. Soares CJ; Santana FR; Pereira JC; Araujo TS; Menezes MS J Prosthet Dent; 2008 Jun; 99(6):444-54. PubMed ID: 18514666 [TBL] [Abstract][Full Text] [Related]
8. Augmentation of acrylic bone cement with multiwall carbon nanotubes. Marrs B; Andrews R; Rantell T; Pienkowski D J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130 [TBL] [Abstract][Full Text] [Related]
9. Development of new bone cement utilizing low toxicity monomers. Ono S; Kadoma Y; Morita S; Takakuda K J Med Dent Sci; 2008 Jun; 55(2):189-96. PubMed ID: 19697507 [TBL] [Abstract][Full Text] [Related]
10. Photophysical properties of a novel organic-inorganic hybrid material: Eu(III)-β-diketone complex covalently bonded to SiO(2) /ZnO composite matrix. Li YJ; Yan B Photochem Photobiol; 2010; 86(5):1008-15. PubMed ID: 20553415 [TBL] [Abstract][Full Text] [Related]
11. The self-setting properties and in vitro bioactivity of tricalcium silicate. Zhao W; Wang J; Zhai W; Wang Z; Chang J Biomaterials; 2005 Nov; 26(31):6113-21. PubMed ID: 15927252 [TBL] [Abstract][Full Text] [Related]
12. Nano-mechanics of bone and bioactive bone cement interfaces in a load-bearing model. Ni GX; Choy YS; Lu WW; Ngan AH; Chiu KY; Li ZY; Tang B; Luk KD Biomaterials; 2006 Mar; 27(9):1963-70. PubMed ID: 16226309 [TBL] [Abstract][Full Text] [Related]
13. Iron oxide nanoparticles significantly enhances the injectability of apatitic bone cement for vertebroplasty. Vlad MD; del Valle LJ; Barracó M; Torres R; López J; Fernández E Spine (Phila Pa 1976); 2008 Oct; 33(21):2290-8. PubMed ID: 18827693 [TBL] [Abstract][Full Text] [Related]
14. A new bioactive bone cement: its histological and mechanical characterization. Nishimura N; Yamamuro T; Taguchi Y; Ikenaga M; Nakamura T; Kokubo T; Yoshihara S J Appl Biomater; 1991; 2(4):219-29. PubMed ID: 10149398 [TBL] [Abstract][Full Text] [Related]
15. N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement. Tsukimura N; Yamada M; Aita H; Hori N; Yoshino F; Chang-Il Lee M; Kimoto K; Jewett A; Ogawa T Biomaterials; 2009 Jul; 30(20):3378-89. PubMed ID: 19303139 [TBL] [Abstract][Full Text] [Related]
16. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone. Boger A; Bisig A; Bohner M; Heini P; Schneider E J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856 [TBL] [Abstract][Full Text] [Related]
17. The effect of the addition of methylene blue on the fatigue strength of Simplex P bone-cement. Davies JP; Harris WH J Appl Biomater; 1992; 3(2):81-5. PubMed ID: 10147706 [TBL] [Abstract][Full Text] [Related]
18. Bioactive bone cement: the effect of amounts of glass powder and histologic changes with time. Tamura J; Kawanabe K; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S; Shibuya T J Biomed Mater Res; 1995 May; 29(5):551-9. PubMed ID: 7622540 [TBL] [Abstract][Full Text] [Related]
19. Development of high-viscosity, two-paste bioactive bone cements. Deb S; Aiyathurai L; Roether JA; Luklinska ZB Biomaterials; 2005 Jun; 26(17):3713-8. PubMed ID: 15621261 [TBL] [Abstract][Full Text] [Related]
20. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads. Boger A; Bohner M; Heini P; Schwieger K; Schneider E Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]