These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 12484533)

  • 1. Prospects for using genetic transformation for improved SIT and new biocontrol methods.
    Handler AM
    Genetica; 2002 Sep; 116(1):137-49. PubMed ID: 12484533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the stability and ecological safety of mass-reared transgenic strains for field release by redundant conditional lethality systems.
    Handler AM
    Insect Sci; 2016 Apr; 23(2):225-34. PubMed ID: 26097098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding and improving transgene stability and expression in insects for SIT and conditional lethal release programs.
    Handler AM
    Insect Biochem Mol Biol; 2004 Feb; 34(2):121-30. PubMed ID: 14871608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and utilization of transgenic New World screwworm, Cochliomyia hominivorax.
    Handler AM; Allen ML; Skoda SR
    Med Vet Entomol; 2009 Jun; 23 Suppl 1():98-105. PubMed ID: 19335836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insect transgenesis: mechanisms, applications, and ecological safety.
    Handler AM; Atkinson PW
    Biotechnol Genet Eng Rev; 2006; 23():129-56. PubMed ID: 22530506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bactrocera tryoni and closely related pest tephritids--molecular analysis and prospects for transgenic control strategies.
    Raphael KA; Whyard S; Shearman D; An X; Frommer M
    Insect Biochem Mol Biol; 2004 Feb; 34(2):167-76. PubMed ID: 14871613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspective on the combined use of an independent transgenic sexing and a multifactorial reproductive sterility system to avoid resistance development against transgenic Sterile Insect Technique approaches.
    Eckermann KN; Dippel S; Carrami EM; Ahmed HM; Curril IM; Wimmer EA
    BMC Genet; 2014; 15 Suppl 2(Suppl 2):S17. PubMed ID: 25471733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of transgenic strains for the biological control of the Mexican fruit fly, Anastrepha ludens.
    Meza JS; Nirmala X; Zimowska GJ; Zepeda-Cisneros CS; Handler AM
    Genetica; 2011 Jan; 139(1):53-62. PubMed ID: 20737195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent transformation markers for insect transgenesis.
    Horn C; Schmid BG; Pogoda FS; Wimmer EA
    Insect Biochem Mol Biol; 2002 Oct; 32(10):1221-35. PubMed ID: 12225913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building a transgenic sexing strain for genetic control of the Australian sheep blow fly Lucilia cuprina using two lethal effectors.
    Yan Y; Scott MJ
    BMC Genet; 2020 Dec; 21(Suppl 2):141. PubMed ID: 33339506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic engineering in insects of agricultural importance.
    Atkinson PW
    Insect Biochem Mol Biol; 2002 Oct; 32(10):1237-42. PubMed ID: 12225914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medfly promoters relevant to the sterile insect technique.
    Komitopoulou K; Christophides GK; Kalosaka K; Chrysanthis G; Theodoraki MA; Savakis C; Zacharopoulou A; Mintzas AC
    Insect Biochem Mol Biol; 2004 Feb; 34(2):149-57. PubMed ID: 14871611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population genetics of autocidal control and strain replacement.
    Gould F; Schliekelman P
    Annu Rev Entomol; 2004; 49():193-217. PubMed ID: 14651462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly.
    Gong P; Epton MJ; Fu G; Scaife S; Hiscox A; Condon KC; Condon GC; Morrison NI; Kelly DW; Dafa'alla T; Coleman PG; Alphey L
    Nat Biotechnol; 2005 Apr; 23(4):453-6. PubMed ID: 15750586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular technologies to improve the effectiveness of the sterile insect technique.
    Franz G; Robinson AS
    Genetica; 2011 Jan; 139(1):1-5. PubMed ID: 21258957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgenic sexing system for Ceratitis capitata (Diptera: Tephritidae) based on female-specific embryonic lethality.
    Ogaugwu CE; Schetelig MF; Wimmer EA
    Insect Biochem Mol Biol; 2013 Jan; 43(1):1-8. PubMed ID: 23137881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transgene-based, embryo-specific lethality system for insect pest management.
    Horn C; Wimmer EA
    Nat Biotechnol; 2003 Jan; 21(1):64-70. PubMed ID: 12483222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass rearing of temperature sensitive genetic sexing strains in the Mediterranean fruit fly (Ceratitis capitata).
    Caceres C
    Genetica; 2002 Sep; 116(1):107-16. PubMed ID: 12484530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic stability of sexing strains based on the locus sw of Ceratitis capitata.
    Delprat MA; Stolar CE; Manso FC; Cladera JL
    Genetica; 2002 Sep; 116(1):85-95. PubMed ID: 12484528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Germline transformation of the spotted wing drosophilid, Drosophila suzukii, with a piggyBac transposon vector.
    Schetelig MF; Handler AM
    Genetica; 2013 Jun; 141(4-6):189-93. PubMed ID: 23564446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.