BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12484780)

  • 1. Mn2+ is a native metal ion activator for bacteriophage lambda protein phosphatase.
    Reiter TA; Reiter NJ; Rusnak F
    Biochemistry; 2002 Dec; 41(51):15404-9. PubMed ID: 12484780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the high affinity Mn2+ binding site of bacteriophage lambda phosphoprotein phosphatase: effects of metal ligand mutations on electron paramagnetic resonance spectra and phosphatase activities.
    White DJ; Reiter NJ; Sikkink RA; Yu L; Rusnak F
    Biochemistry; 2001 Jul; 40(30):8918-29. PubMed ID: 11467953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of bacteriophage lambda protein phosphatase by organic and oxoanion inhibitors.
    Reiter NJ; White DJ; Rusnak F
    Biochemistry; 2002 Jan; 41(3):1051-9. PubMed ID: 11790129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical studies of the mono-Fe, Fe-Zn, and Fe-Fe metalloisoforms of bacteriophage lambda protein phosphatase.
    Reiter TA; Rusnak F
    Biochemistry; 2004 Jan; 43(3):782-90. PubMed ID: 14730983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of bacteriophage lambda protein phosphatase with Mn(II): evidence for the formation of a [Mn(II)]2 cluster.
    Rusnak F; Yu L; Todorovic S; Mertz P
    Biochemistry; 1999 May; 38(21):6943-52. PubMed ID: 10346916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II).
    Buy C; Girault G; Zimmermann JL
    Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II.
    Ananyev GM; Murphy A; Abe Y; Dismukes GC
    Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic implications for the formation of the diiron cluster in ribonucleotide reductase provided by quantitative EPR spectroscopy.
    Pierce BS; Elgren TE; Hendrich MP
    J Am Chem Soc; 2003 Jul; 125(29):8748-59. PubMed ID: 12862469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of metal ions in the reaction catalyzed by L-ribulose-5-phosphate 4-epimerase.
    Lee LV; Poyner RR; Vu MV; Cleland WW
    Biochemistry; 2000 Apr; 39(16):4821-30. PubMed ID: 10769139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divalent metal cation requirements of phosphofructokinase-2 from E. coli. Evidence for a high affinity binding site for Mn2+.
    Rivas-Pardo JA; Caniuguir A; Wilson CA; Babul J; Guixé V
    Arch Biochem Biophys; 2011 Jan; 505(1):60-6. PubMed ID: 20887711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-ion mutagenesis: conversion of a purple acid phosphatase from sweet potato to a neutral phosphatase with the formation of an unprecedented catalytically competent Mn(II)Mn(II) active site.
    Mitić N; Noble CJ; Gahan LR; Hanson GR; Schenk G
    J Am Chem Soc; 2009 Jun; 131(23):8173-9. PubMed ID: 19507905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal binding studies and EPR spectroscopy of the manganese transport regulator MntR.
    Golynskiy MV; Gunderson WA; Hendrich MP; Cohen SM
    Biochemistry; 2006 Dec; 45(51):15359-72. PubMed ID: 17176058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the bacteriophage lambda Ser/Thr protein phosphatase with sulfate ion bound in two coordination modes.
    Voegtli WC; White DJ; Reiter NJ; Rusnak F; Rosenzweig AC
    Biochemistry; 2000 Dec; 39(50):15365-74. PubMed ID: 11112522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and spectroscopic characterization of ACMSD from Pseudomonas fluorescens reveals a pentacoordinate mononuclear metallocofactor.
    Li T; Walker AL; Iwaki H; Hasegawa Y; Liu A
    J Am Chem Soc; 2005 Sep; 127(35):12282-90. PubMed ID: 16131206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and spectroscopic analyses of mutants of a conserved histidine in the metallophosphatases calcineurin and lambda protein phosphatase.
    Mertz P; Yu L; Sikkink R; Rusnak F
    J Biol Chem; 1997 Aug; 272(34):21296-302. PubMed ID: 9261141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-affinity metal-binding site in beef heart mitochondrial F1ATPase: an EPR spectroscopy study.
    Zoleo A; Contessi S; Lippe G; Pinato L; Brustolon M; Brunel LC; Dabbeni-Sala F; Maniero AL
    Biochemistry; 2004 Oct; 43(41):13214-24. PubMed ID: 15476415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side chain and Mn2+ rescue of the Glu117Asp mutant.
    Sun W; Nicholson AW
    Biochemistry; 2001 Apr; 40(16):5102-10. PubMed ID: 11305928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme.
    D'souza VM; Holz RC
    Biochemistry; 1999 Aug; 38(34):11079-85. PubMed ID: 10460163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.