These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12484834)

  • 1. Theoretical evaluation of zirconia and hafnia as gate oxides for si microelectronics.
    Fiorentini V; Gulleri G
    Phys Rev Lett; 2002 Dec; 89(26):266101. PubMed ID: 12484834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bonding, energies, and band offsets of Si-ZrO2 and HfO2 gate oxide interfaces.
    Peacock PW; Robertson J
    Phys Rev Lett; 2004 Feb; 92(5):057601. PubMed ID: 14995342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Epitaxial Growth of Polar (1 -
    Nukala P; Antoja-Lleonart J; Wei Y; Yedra L; Dkhil B; Noheda B
    ACS Appl Electron Mater; 2019 Dec; 1(12):2585-2593. PubMed ID: 32954356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary search for new high-k dielectric materials: methodology and applications to hafnia-based oxides.
    Zeng Q; Oganov AR; Lyakhov AO; Xie C; Zhang X; Zhang J; Zhu Q; Wei B; Grigorenko I; Zhang L; Cheng L
    Acta Crystallogr C Struct Chem; 2014 Feb; 70(Pt 2):76-84. PubMed ID: 24508952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid gate dielectric materials for unconventional electronic circuitry.
    Ha YG; Everaerts K; Hersam MC; Marks TJ
    Acc Chem Res; 2014 Apr; 47(4):1019-28. PubMed ID: 24428627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment.
    Park MH; Lee YH; Kim HJ; Schenk T; Lee W; Kim KD; Fengler FPG; Mikolajick T; Schroeder U; Hwang CS
    Nanoscale; 2017 Jul; 9(28):9973-9986. PubMed ID: 28681890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and Insulating Behaviour of High-Permittivity Binary Oxide Thin Films for Silicon Carbide and Gallium Nitride Electronic Devices.
    Lo Nigro R; Fiorenza P; Greco G; Schilirò E; Roccaforte F
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambient-processable high capacitance hafnia-organic self-assembled nanodielectrics.
    Everaerts K; Emery JD; Jariwala D; Karmel HJ; Sangwan VK; Prabhumirashi PL; Geier ML; McMorrow JJ; Bedzyk MJ; Facchetti A; Hersam MC; Marks TJ
    J Am Chem Soc; 2013 Jun; 135(24):8926-39. PubMed ID: 23688160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band offsets at semiconductor-oxide interfaces from hybrid density-functional calculations.
    Alkauskas A; Broqvist P; Devynck F; Pasquarello A
    Phys Rev Lett; 2008 Sep; 101(10):106802. PubMed ID: 18851241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric.
    Tsai SJ; Wang CL; Lee HC; Lin CY; Chen JW; Shiu HW; Chang LY; Hsueh HT; Chen HY; Tsai JY; Lu YH; Chang TC; Tu LW; Teng H; Chen YC; Chen CH; Wu CL
    Sci Rep; 2016 Jun; 6():28326. PubMed ID: 27325155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band Offsets at κ-([Al,In]
    Schultz T; Kneiß M; Storm P; Splith D; von Wenckstern H; Grundmann M; Koch N
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8879-8885. PubMed ID: 31977187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carrier Transport Mechanism via a High-
    Ahn J; Kim TW
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6014-6016. PubMed ID: 29677735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valence electron energy-loss spectroscopy study of ZrSiO₄ and ZrO₂.
    Jiang N; Spence JC
    Ultramicroscopy; 2013 Nov; 134():68-76. PubMed ID: 23916829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The growth of ultra-thin zirconia films on Pd(3)Zr(0 0 0 1).
    Choi JI; Mayr-Schmölzer W; Mittendorfer F; Redinger J; Diebold U; Schmid M
    J Phys Condens Matter; 2014 Jun; 26(22):225003. PubMed ID: 24823813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure differences in ZrO2 vs HfO2.
    Zheng W; Bowen KH; Li J; Dabkowska I; Gutowski M
    J Phys Chem A; 2005 Dec; 109(50):11521-5. PubMed ID: 16354043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational discovery of two-dimensional HfO
    Wang Y; Ren J
    Phys Chem Chem Phys; 2020 Feb; 22(8):4481-4489. PubMed ID: 32064477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Causes of ferroelectricity in HfO
    Dogan M; Gong N; Ma TP; Ismail-Beigi S
    Phys Chem Chem Phys; 2019 Jun; 21(23):12150-12162. PubMed ID: 31144707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unified interatomic potential and energy barrier distributions for amorphous oxides.
    Trinastic JP; Hamdan R; Wu Y; Zhang L; Cheng HP
    J Chem Phys; 2013 Oct; 139(15):154506. PubMed ID: 24160526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleation and growth of atomic layer deposition of HfO2 gate dielectric layers on silicon oxide: a multiscale modelling investigation.
    Dkhissi A; Mazaleyrat G; Estève A; Rouhani MD
    Phys Chem Chem Phys; 2009 May; 11(19):3701-9. PubMed ID: 19421481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A honeycomb-like monolayer of HfO
    Weng J; Gao SP
    Phys Chem Chem Phys; 2018 Nov; 20(41):26453-26462. PubMed ID: 30306170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.