BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12484918)

  • 1. Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: influence of particle size, shape, and chemical surrounding.
    Bosbach J; Hendrich C; Stietz F; Vartanyan T; Träger F
    Phys Rev Lett; 2002 Dec; 89(25):257404. PubMed ID: 12484918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drastic reduction of plasmon damping in gold nanorods.
    Sönnichsen C; Franzl T; Wilk T; von Plessen G; Feldmann J; Wilson O; Mulvaney P
    Phys Rev Lett; 2002 Feb; 88(7):077402. PubMed ID: 11863939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning.
    Stietz F; Bosbach J; Wenzel T; Vartanyan T; Goldmann A; Trager F
    Phys Rev Lett; 2000 Jun; 84(24):5644-7. PubMed ID: 10991015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance.
    Huang W; Qian W; El-Sayed MA
    J Am Chem Soc; 2006 Oct; 128(41):13330-1. PubMed ID: 17031925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the Interband Transitions in Gold and Silver on the Dynamics of Propagating and Localized Surface Plasmons.
    Kolwas K; Derkachova A
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pure surface plasmon resonance enhancement of the first hyperpolarizability of gold core-silver shell nanoparticles.
    Abid JP; Nappa J; Girault HH; Brevet PF
    J Chem Phys; 2004 Dec; 121(24):12577-82. PubMed ID: 15606279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles.
    Bachelier G; Russier-Antoine I; Benichou E; Jonin C; Del Fatti N; Vallée F; Brevet PF
    Phys Rev Lett; 2008 Nov; 101(19):197401. PubMed ID: 19113308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and fragmentation of silver nanoparticles in their synthesis with a fs laser and CW light by photo-sensitization with benzophenone.
    Eustis S; Krylova G; Eremenko A; Smirnova N; Schill AW; El-Sayed M
    Photochem Photobiol Sci; 2005 Jan; 4(1):154-9. PubMed ID: 15616707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of silver nanoparticles by chemical reduction method.
    Khan Z; Al-Thabaiti SA; Obaid AY; Al-Youbi AO
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):513-7. PubMed ID: 21050730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid.
    Rogers KR; Bradham K; Tolaymat T; Thomas DJ; Hartmann T; Ma L; Williams A
    Sci Total Environ; 2012 Mar; 420():334-9. PubMed ID: 22330420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-mediated syntheses of metallic nanostructures.
    Langille MR; Personick ML; Mirkin CA
    Angew Chem Int Ed Engl; 2013 Dec; 52(52):13910-40. PubMed ID: 24281910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the surface-enhanced Raman scattering properties of Au-Ag nanocages at two different excitation wavelengths.
    Rycenga M; Hou KK; Cobley CM; Schwartz AG; Camargo PH; Xia Y
    Phys Chem Chem Phys; 2009 Jul; 11(28):5903-8. PubMed ID: 19588011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.