These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 12485103)

  • 1. Confinement of acoustical vibrations in a semiconductor planar phonon cavity.
    Trigo M; Bruchhausen A; Fainstein A; Jusserand B; Thierry-Mieg V
    Phys Rev Lett; 2002 Nov; 89(22):227402. PubMed ID: 12485103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standing optical phonons in finite semiconductor superlattices studied by resonant Raman scattering in a double microcavity.
    Fainstein A; Trigo M; Oliva D; Jusserand B; Freixanet T; Thierry-Mieg V
    Phys Rev Lett; 2001 Apr; 86(15):3411-4. PubMed ID: 11327983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman scattering of InAs/AlAs quantum dot superlattices grown on (001) and (311)B GaAs surfaces.
    Milekhin A; Yeryukov N; Toropov A; Dmitriev D; Sheremet E; Zahn DR
    Nanoscale Res Lett; 2012 Aug; 7(1):476. PubMed ID: 22916827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic phonon modes and dispersion relations of nanowire superlattices.
    Mizuno S; Nishiguchi N
    J Phys Condens Matter; 2009 May; 21(19):195303. PubMed ID: 21825477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light.
    Fainstein A; Lanzillotti-Kimura ND; Jusserand B; Perrin B
    Phys Rev Lett; 2013 Jan; 110(3):037403. PubMed ID: 23373951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain evolution and confinement effect in InAs/AlAs short-period superlattices studied by Raman spectroscopy.
    Zhao Y; Lu K; Yao J; Ning J; Chen B; Lu H; Zheng C
    Sci Rep; 2023 Jan; 13(1):123. PubMed ID: 36599857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical study of electron and acoustic phonon confinement in ultrathin-body germanium-on-insulator nanolayers.
    Poborchii V; Groenen J; Geshev PI; Hattori J; Chang WH; Ishii H; Irisawa T; Maeda T
    Nanoscale; 2021 Jun; 13(21):9686-9697. PubMed ID: 34018526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon-induced polariton superlattices.
    de Lima MM; van der Poel M; Santos PV; Hvam JM
    Phys Rev Lett; 2006 Jul; 97(4):045501. PubMed ID: 16907587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiconductor superlattices: a tool for terahertz acoustics.
    Huynh A; Perrin B; Lemaître A
    Ultrasonics; 2015 Feb; 56():66-79. PubMed ID: 25163800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective optical generation of coherent acoustic nanocavity modes.
    Pascual Winter MF; Rozas G; Fainstein A; Jusserand B; Perrin B; Huynh A; Vaccaro PO; Saravanan S
    Phys Rev Lett; 2007 Jun; 98(26):265501. PubMed ID: 17678102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.
    Hofmann F; Garg J; Maznev AA; Jandl A; Bulsara M; Fitzgerald EA; Chen G; Nelson KA
    J Phys Condens Matter; 2013 Jul; 25(29):295401. PubMed ID: 23817884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires.
    Kargar F; Debnath B; Kakko JP; Säynätjoki A; Lipsanen H; Nika DL; Lake RK; Balandin AA
    Nat Commun; 2016 Nov; 7():13400. PubMed ID: 27830698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent generation of acoustic phonons in an optical microcavity.
    Lanzillotti-Kimura ND; Fainstein A; Huynh A; Perrin B; Jusserand B; Miard A; Lemaître A
    Phys Rev Lett; 2007 Nov; 99(21):217405. PubMed ID: 18233256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon-induced optical superlattice.
    de Lima MM; Hey R; Santos PV; Cantarero A
    Phys Rev Lett; 2005 Apr; 94(12):126805. PubMed ID: 15903949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity.
    Chen JC; Sato Y; Kosaka R; Hashisaka M; Muraki K; Fujisawa T
    Sci Rep; 2015 Oct; 5():15176. PubMed ID: 26469629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent Acoustic Phonons in Colloidal Semiconductor Nanocrystal Superlattices.
    Poyser CL; Czerniuk T; Akimov A; Diroll BT; Gaulding EA; Salasyuk AS; Kent AJ; Yakovlev DR; Bayer M; Murray CB
    ACS Nano; 2016 Jan; 10(1):1163-9. PubMed ID: 26696021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-frequency Raman spectrum of 2D layered perovskites: Local atomistic motion or superlattice modes?
    Dahod NS; France-Lanord A; Paritmongkol W; Grossman JC; Tisdale WA
    J Chem Phys; 2020 Jul; 153(4):044710. PubMed ID: 32752687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon dynamics and electron-phonon coupling in pristine picene.
    Girlando A; Masino M; Bilotti I; Brillante A; Della Valle RG; Venuti E
    Phys Chem Chem Phys; 2012 Feb; 14(5):1694-9. PubMed ID: 22193510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic Engineering of Phonons in Functional Oxide Heterostructures.
    Jeong SG; Seo A; Choi WS
    Adv Sci (Weinh); 2022 Mar; 9(7):e2103403. PubMed ID: 35038232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic phonon emission from a weakly coupled superlattice under vertical electron transport: observation of phonon resonance.
    Kent AJ; Kini RN; Stanton NM; Henini M; Glavin BA; Kochelap VA; Linnik TL
    Phys Rev Lett; 2006 Jun; 96(21):215504. PubMed ID: 16803248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.