These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12485161)

  • 1. Two conserved structural components, A-rich bulge and P4 XJ6/7 base-triples, in activating the group I ribozymes.
    Ikawa Y; Yoshimura T; Hara H; Shiraishi H; Inoue T
    Genes Cells; 2002 Dec; 7(12):1205-15. PubMed ID: 12485161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-splicing of the Tetrahymena group I ribozyme without conserved base-triples.
    Ikawa Y; Yoshioka W; Ohki Y; Shiraishi H; Inoue T
    Genes Cells; 2001 May; 6(5):411-20. PubMed ID: 11380619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the nucleotides in the A-rich bulge of the Tetrahymena ribozyme responsible for an efficient self-splicing reaction.
    Ikawa Y; Okada A; Imahori H; Shiraishi H; Inoue T
    J Biochem; 1997 Oct; 122(4):878-82. PubMed ID: 9399595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of a conserved J8/7 X P4 base-triple in the Tetrahymena ribozyme.
    Ohki Y; Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 2002 Nov; 132(5):713-8. PubMed ID: 12417020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
    Engelhardt MA; Doherty EA; Knitt DS; Doudna JA; Herschlag D
    Biochemistry; 2000 Mar; 39(10):2639-51. PubMed ID: 10704214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis.
    Legault P; Herschlag D; Celander DW; Cech TR
    Nucleic Acids Res; 1992 Dec; 20(24):6613-9. PubMed ID: 1480482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concerted effects of two activator modules on the group I ribozyme reaction.
    Ikawa Y; Shiohara T; Ohuchi S; Inoue T
    J Biochem; 2009 Apr; 145(4):429-35. PubMed ID: 19122204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimal catalytic domain of a group I self-splicing intron RNA.
    Ikawa Y; Shiraishi H; Inoue T
    Nat Struct Biol; 2000 Nov; 7(11):1032-5. PubMed ID: 11062558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme.
    Pyle AM; Murphy FL; Cech TR
    Nature; 1992 Jul; 358(6382):123-8. PubMed ID: 1377367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The P5 activator of a group IC ribozyme can replace the P7.1/7.2 activator of a group IA ribozyme.
    Ikawa Y; Sasaki K; Tominaga H; Inoue T
    J Biochem; 2003 May; 133(5):665-70. PubMed ID: 12801919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simulated molecular evolution from minimal catalytic domain of a group I ribozyme.
    Ohuchi SJ; Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Res Suppl; 2001; (1):125-6. PubMed ID: 12836296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joining the two domains of a group I ribozyme to form the catalytic core.
    Tanner MA; Cech TR
    Science; 1997 Feb; 275(5301):847-9. PubMed ID: 9012355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity.
    Campbell TB; Cech TR
    Biochemistry; 1996 Sep; 35(35):11493-502. PubMed ID: 8784205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of P8 and J8/7 elements in the conserved core of the tetrahymena group I intron ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2000 Jan; 267(1):85-90. PubMed ID: 10623579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of mutations in the core of the Tetrahymena ribozyme by spermidine, ethanol and by substrate stabilization.
    Hanna M; Szostak JW
    Nucleic Acids Res; 1994 Dec; 22(24):5326-31. PubMed ID: 7816622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ; Dávila-Aponte JA; Cech TR
    Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial modules for enhancing rate constants of a Group I intron ribozyme without a P4-P6 core element.
    Ohuchi SJ; Ikawa Y; Shiraishi H; Inoue T
    J Biol Chem; 2004 Jan; 279(1):540-6. PubMed ID: 14573613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing.
    Karbstein K; Lee J; Herschlag D
    Biochemistry; 2007 Apr; 46(16):4861-75. PubMed ID: 17385892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme.
    Strobel SA; Cech TR
    Biochemistry; 1993 Dec; 32(49):13593-604. PubMed ID: 7504953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro genetic analysis of the hinge region between helical elements P5-P4-P6 and P7-P3-P8 in the sunY group I self-splicing intron.
    Green R; Szostak JW
    J Mol Biol; 1994 Jan; 235(1):140-55. PubMed ID: 7507168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.