BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12485400)

  • 1. Expression and functional characterization of the extraneuronal monoamine transporter in normal human astrocytes.
    Inazu M; Takeda H; Matsumiya T
    J Neurochem; 2003 Jan; 84(1):43-52. PubMed ID: 12485400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain.
    Wu X; Kekuda R; Huang W; Fei YJ; Leibach FH; Chen J; Conway SJ; Ganapathy V
    J Biol Chem; 1998 Dec; 273(49):32776-86. PubMed ID: 9830022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacological characterization and visualization of the glial serotonin transporter.
    Inazu M; Takeda H; Ikoshi H; Sugisawa M; Uchida Y; Matsumiya T
    Neurochem Int; 2001 Jul; 39(1):39-49. PubMed ID: 11311448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apical uptake of organic cations by human intestinal Caco-2 cells: putative involvement of ASF transporters.
    Martel F; Gründemann D; Calhau C; Schömig E
    Naunyn Schmiedebergs Arch Pharmacol; 2001 Jan; 363(1):40-9. PubMed ID: 11191835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of human extraneuronal monoamine transporter (hEMT) expressed in HEK293 cells by intracellular second messenger systems.
    Martel F; Keating E; Calhau C; Gründemann D; Schömig E; Azevedo I
    Naunyn Schmiedebergs Arch Pharmacol; 2001 Dec; 364(6):487-95. PubMed ID: 11770002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of the neurotoxin, 4-methylphenylpyridinium, into chromaffin granules and synaptic vesicles: a proton gradient drives its uptake through monoamine transporter.
    Moriyama Y; Amakatsu K; Futai M
    Arch Biochem Biophys; 1993 Sep; 305(2):271-7. PubMed ID: 8373164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional expression of the norepinephrine transporter in cultured rat astrocytes.
    Inazu M; Takeda H; Matsumiya T
    J Neurochem; 2003 Jan; 84(1):136-44. PubMed ID: 12485410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inward transport of 3H-MPP+ in freshly isolated rat hepatocytes: evidence for interaction with catecholamines.
    Martel F; Martins MJ; Azevedo I
    Naunyn Schmiedebergs Arch Pharmacol; 1996; 354(3):305-11. PubMed ID: 8878060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of rat plasma membrane monoamine transporter in the blood-brain and blood-cerebrospinal fluid barriers.
    Okura T; Kato S; Takano Y; Sato T; Yamashita A; Morimoto R; Ohtsuki S; Terasaki T; Deguchi Y
    J Pharm Sci; 2011 Sep; 100(9):3924-38. PubMed ID: 21538354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the extraneuronal monoamine transporter in RPE and neural retina.
    Rajan PD; Kekuda R; Chancy CD; Huang W; Ganapathy V; Smith SB
    Curr Eye Res; 2000 Mar; 20(3):195-204. PubMed ID: 10694895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and functional characterization of an Na+-independent choline transporter in rat astrocytes.
    Inazu M; Takeda H; Matsumiya T
    J Neurochem; 2005 Sep; 94(5):1427-37. PubMed ID: 16000150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of 1-methyl-4-phenylpyridinium (MPP+) by the JAR human placental choriocarcinoma cell line: comparison with 5-hydroxytryptamine.
    Martel F; Keating E
    Placenta; 2003 Apr; 24(4):361-9. PubMed ID: 12657510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The extraneuronal transport mechanism for noradrenaline (uptake2) avidly transports 1-methyl-4-phenylpyridinium (MPP+).
    Russ H; Gliese M; Sonna J; Schömig E
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Aug; 346(2):158-65. PubMed ID: 1448180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the extraneuronal monoamine transporter (uptake2) in human glioma cells.
    Streich S; Brüss M; Bönisch H
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Feb; 353(3):328-33. PubMed ID: 8692289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic cation transporter mRNA and function in the rat superior cervical ganglion.
    Kristufek D; Rudorfer W; Pifl C; Huck S
    J Physiol; 2002 Aug; 543(Pt 1):117-34. PubMed ID: 12181285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice.
    Zwart R; Verhaagh S; Buitelaar M; Popp-Snijders C; Barlow DP
    Mol Cell Biol; 2001 Jul; 21(13):4188-96. PubMed ID: 11390648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of P-glycoprotein modulators on the human extraneuronal monoamine transporter.
    Martel F; Keating E; Azevedo I
    Eur J Pharmacol; 2001 Jun; 422(1-3):31-7. PubMed ID: 11430910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the transport of the organic cation [3H]MPP+ in human intestinal epithelial (Caco-2) cells.
    Martel F; Calhau C; Azevedo I
    Naunyn Schmiedebergs Arch Pharmacol; 2000 May; 361(5):505-13. PubMed ID: 10832604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The neurotoxin 1-methyl-4-phenylpyridinium is a substrate for the canalicular organic cation/H+ exchanger.
    Moseley RH; Zugger LJ; Van Dyke RW
    J Pharmacol Exp Ther; 1997 Apr; 281(1):34-40. PubMed ID: 9103477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of [3H]MPP+ in an immortalized rat brain microvessel endothelial cell line (RBE 4).
    Martel F; Calhau C; Soares-da-Silva P; Azevedo I
    Naunyn Schmiedebergs Arch Pharmacol; 2001 Jan; 363(1):1-10. PubMed ID: 11191826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.