BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 12485410)

  • 1. Functional expression of the norepinephrine transporter in cultured rat astrocytes.
    Inazu M; Takeda H; Matsumiya T
    J Neurochem; 2003 Jan; 84(1):136-44. PubMed ID: 12485410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological characterization and visualization of the glial serotonin transporter.
    Inazu M; Takeda H; Ikoshi H; Sugisawa M; Uchida Y; Matsumiya T
    Neurochem Int; 2001 Jul; 39(1):39-49. PubMed ID: 11311448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Astroglial dopamine transport is mediated by norepinephrine transporter.
    Takeda H; Inazu M; Matsumiya T
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Dec; 366(6):620-3. PubMed ID: 12444505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological characterization of dopamine transport in cultured rat astrocytes.
    Inazu M; Kubota N; Takeda H; Zhang J; Kiuchi Y; Oguchi K; Matsumiya T
    Life Sci; 1999; 64(24):2239-45. PubMed ID: 10374914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of dopamine uptake by basic fibroblast growth factor and epidermal growth factor in cultured rat astrocytes.
    Inazu M; Takeda H; Ikoshi H; Uchida Y; Kubota N; Kiuchi Y; Oguchi K; Matsumiya T
    Neurosci Res; 1999 Sep; 34(4):235-44. PubMed ID: 10576546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and functional characterization of the extraneuronal monoamine transporter in normal human astrocytes.
    Inazu M; Takeda H; Matsumiya T
    J Neurochem; 2003 Jan; 84(1):43-52. PubMed ID: 12485400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and functional characterization of an Na+-independent choline transporter in rat astrocytes.
    Inazu M; Takeda H; Matsumiya T
    J Neurochem; 2005 Sep; 94(5):1427-37. PubMed ID: 16000150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and characterization of an L-epinephrine transporter from sympathetic ganglia of the bullfrog, Rana catesbiana.
    Apparsundaram S; Moore KR; Malone MD; Hartzell HC; Blakely RD
    J Neurosci; 1997 Apr; 17(8):2691-702. PubMed ID: 9092590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of cocaine and antidepressant-sensitive norepinephrine transporters in rat placental trophoblasts.
    Jayanthi LD; Vargas G; DeFelice LJ
    Br J Pharmacol; 2002 Apr; 135(8):1927-34. PubMed ID: 11959795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effect of xylamine on the uptake of [3H]norepinephrine into primary astrocyte cultures.
    Chang TK; Cheng JT
    Brain Res; 1992 Nov; 597(1):162-5. PubMed ID: 1477731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonin transporters in adult rat brain astrocytes revealed by [3H]5-HT uptake into glial plasmalemmal vesicles.
    Hirst WD; Price GW; Rattray M; Wilkin GP
    Neurochem Int; 1998 Jul; 33(1):11-22. PubMed ID: 9694037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Norepinephrine transporters in rat placenta labeled with [3H]nisoxetine.
    Shearman LP; Meyer JS
    J Pharmacol Exp Ther; 1998 Feb; 284(2):736-43. PubMed ID: 9454822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold exposure regulates the norepinephrine uptake transporter in rat brown adipose tissue.
    King VL; Dwoskin LP; Cassis LA
    Am J Physiol; 1999 Jan; 276(1):R143-51. PubMed ID: 9887188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (R)-thionisoxetine, a potent and selective inhibitor of central and peripheral norepinephrine uptake.
    Gehlert DR; Hemrick-Luecke SK; Schober DA; Krushinski J; Howbert JJ; Robertson DW; Wong DT; Fuller RW
    Life Sci; 1995; 56(22):1915-20. PubMed ID: 7746100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of prolonged exposure to milnacipran on norepinephrine transporter in cultured bovine adrenal medullary cells.
    Shinkai K; Yoshimura R; Toyohira Y; Ueno S; Tsutsui M; Nakamura J; Yanagihara N
    Biochem Pharmacol; 2005 Nov; 70(9):1389-97. PubMed ID: 16153610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and release of norepinephrine by serotonergic terminals in norepinephrine transporter knock-out mice: implications for the action of selective serotonin reuptake inhibitors.
    Vizi ES; Zsilla G; Caron MG; Kiss JP
    J Neurosci; 2004 Sep; 24(36):7888-94. PubMed ID: 15356201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Norepinephrine transport by the extraneuronal monoamine transporter in human bronchial arterial smooth muscle cells.
    Horvath G; Sutto Z; Torbati A; Conner GE; Salathe M; Wanner A
    Am J Physiol Lung Cell Mol Physiol; 2003 Oct; 285(4):L829-37. PubMed ID: 12807698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of desipramine treatment on norepinephrine transporter gene expression in the cultured SK-N-BE(2)M17 cells and rat brain tissue.
    Zhu MY; Kim CH; Hwang DY; Baldessarini RJ; Kim KS
    J Neurochem; 2002 Jul; 82(1):146-53. PubMed ID: 12091475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in serotonin and norepinephrine uptake sites after chronic cocaine: pre- vs. post-withdrawal effects.
    Belej T; Manji D; Sioutis S; Barros HM; Nobrega JN
    Brain Res; 1996 Oct; 736(1-2):287-96. PubMed ID: 8930335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catechol-O-methyltransferase activity in CHO cells expressing norepinephrine transporter.
    Percy E; Kaye DM; Lambert GW; Gruskin S; Esler MD; Du XJ
    Br J Pharmacol; 1999 Oct; 128(3):774-80. PubMed ID: 10516661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.