These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 124855)

  • 1. The resolution of arterial pulses into forward and backward waves as an approach to the determination of the characteristic impedance.
    Sperling W; Bauer RD; Busse R; Körner H; Pasch T
    Pflugers Arch; 1975 Mar; 355(3):217-27. PubMed ID: 124855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women.
    Segers P; Rietzschel ER; De Buyzere ML; Vermeersch SJ; De Bacquer D; Van Bortel LM; De Backer G; Gillebert TC; Verdonck PR;
    Hypertension; 2007 Jun; 49(6):1248-55. PubMed ID: 17404183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructive and destructive addition of forward and reflected arterial pulse waves.
    Quick CM; Berger DS; Noordergraaf A
    Am J Physiol Heart Circ Physiol; 2001 Apr; 280(4):H1519-27. PubMed ID: 11247762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeated reflection of waves in the systemic arterial system.
    Berger DS; Li JK; Laskey WK; Noordergraaf A
    Am J Physiol; 1993 Jan; 264(1 Pt 2):H269-81. PubMed ID: 8430856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method of measuring propagation coefficients and characteristic impedance in blood vessels.
    Milnor WR; Nichols WW
    Circ Res; 1975 May; 36(5):631-9. PubMed ID: 1091370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of arterial input impedance spectra from non-invasively recorded pulses.
    Pasch Th; Bauer RD; Busse R
    Basic Res Cardiol; 1976; 71(3):229-42. PubMed ID: 938435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system.
    O'Rourke MF
    J Appl Physiol; 1967 Aug; 23(2):139-49. PubMed ID: 5340142
    [No Abstract]   [Full Text] [Related]  

  • 8. Determination of wave speed and wave separation in the arteries using diameter and velocity.
    Feng J; Khir AW
    J Biomech; 2010 Feb; 43(3):455-62. PubMed ID: 19892359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vivo study of the total occlusion method for the analysis of forward and backward pressure waves.
    Newman DL; Greenwald SE; Bowden NL
    Cardiovasc Res; 1979 Oct; 13(10):595-600. PubMed ID: 519662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical studies on the human arterial pressure and flow pulse by means of non-uniform tube model.
    Bauer RD; Pasch T; Wetterer E
    J Biomech; 1973 May; 6(3):289-98. PubMed ID: 4706939
    [No Abstract]   [Full Text] [Related]  

  • 11. Assessment of Model Based (Input) Impedance, Pulse Wave Velocity, and Wave Reflection in the Asklepios Cohort.
    Hametner B; Parragh S; Mayer C; Weber T; Van Bortel L; De Buyzere M; Segers P; Rietzschel E; Wassertheurer S
    PLoS One; 2015; 10(10):e0141656. PubMed ID: 26513463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reflection in the systemic arterial system: effects of aortic and carotid occlusion.
    Van Den Bos GC; Westerhof N; Elzinga G; Sipkema P
    Cardiovasc Res; 1976 Sep; 10(5):565-73. PubMed ID: 971472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part II: critical evaluation of theoretical model and comparison with noninvasive measurements of flow patterns in normal and pathological cases.
    Stettler JC; Niederer P; Anliker M; Casty M
    Ann Biomed Eng; 1981; 9(2):165-75. PubMed ID: 7342808
    [No Abstract]   [Full Text] [Related]  

  • 14. The relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo.
    Milnor WR; Bertram CD
    Circ Res; 1978 Dec; 43(6):870-9. PubMed ID: 709749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High frequency characteristics of the arterial system.
    Newman DL; Sipkema P; Greenwald SE; Westerhof N
    J Biomech; 1986; 19(10):817-24. PubMed ID: 3782164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HARMONIC ANALYSIS OF PRESSURE PULSES OBTAINED FROM THE HEART AND GREAT VESSELS OF MAN.
    PATEL DJ; MASON DT; ROSS J; BRAUNWALD E
    Am Heart J; 1965 Jun; 69():785-94. PubMed ID: 14296644
    [No Abstract]   [Full Text] [Related]  

  • 18. Location of a reflection site is elusive: consequences for the calculation of aortic pulse wave velocity.
    Westerhof BE; van den Wijngaard JP; Murgo JP; Westerhof N
    Hypertension; 2008 Sep; 52(3):478-83. PubMed ID: 18695144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of noninvasive methods to assess wave reflection and pulse transit time from the pressure waveform alone.
    Kips JG; Rietzschel ER; De Buyzere ML; Westerhof BE; Gillebert TC; Van Bortel LM; Segers P
    Hypertension; 2009 Feb; 53(2):142-9. PubMed ID: 19075098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.