These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 12485627)

  • 1. Identifying splicing sites in eukaryotic RNA: support vector machine approach.
    Sun YF; Fan XD; Li YD
    Comput Biol Med; 2003 Jan; 33(1):17-29. PubMed ID: 12485627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach of encoding for prediction of splice sites using SVM.
    Huang J; Li T; Chen K; Wu J
    Biochimie; 2006 Jul; 88(7):923-9. PubMed ID: 16626852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition.
    Meher PK; Sahu TK; Gahoi S; Satpathy S; Rao AR
    Gene; 2019 Jul; 705():113-126. PubMed ID: 31009682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Splicing-site recognition of rice (Oryza sativa L.) DNA sequences by support vector machines.
    Peng SH; Fan LJ; Peng XN; Zhuang SL; Du W; Chen LB
    J Zhejiang Univ Sci; 2003; 4(5):573-7. PubMed ID: 12958717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach.
    Hua S; Sun Z
    J Mol Biol; 2001 Apr; 308(2):397-407. PubMed ID: 11327775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational approach for prediction of donor splice sites with improved accuracy.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    J Theor Biol; 2016 Sep; 404():285-294. PubMed ID: 27302911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "iSS-Hyb-mRMR": Identification of splicing sites using hybrid space of pseudo trinucleotide and pseudo tetranucleotide composition.
    Iqbal M; Hayat M
    Comput Methods Programs Biomed; 2016 May; 128():1-11. PubMed ID: 27040827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splice site identification using probabilistic parameters and SVM classification.
    Baten AK; Chang BC; Halgamuge SK; Li J
    BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S15. PubMed ID: 17254299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Splice-Site Prediction with Deep Neural Networks.
    Naito T
    J Comput Biol; 2018 Aug; 25(8):954-961. PubMed ID: 29668310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast splice site detection using information content and feature reduction.
    Baten AK; Halgamuge SK; Chang BC
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S8. PubMed ID: 19091031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SpliceFinder: ab initio prediction of splice sites using convolutional neural network.
    Wang R; Wang Z; Wang J; Li S
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):652. PubMed ID: 31881982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RASE: recognition of alternatively spliced exons in C.elegans.
    Rätsch G; Sonnenburg S; Schölkopf B
    Bioinformatics; 2005 Jun; 21 Suppl 1():i369-77. PubMed ID: 15961480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning interpretable SVMs for biological sequence classification.
    Rätsch G; Sonnenburg S; Schäfer C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S9. PubMed ID: 16723012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SpliceRover: interpretable convolutional neural networks for improved splice site prediction.
    Zuallaert J; Godin F; Kim M; Soete A; Saeys Y; De Neve W
    Bioinformatics; 2018 Dec; 34(24):4180-4188. PubMed ID: 29931149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PRINTR: prediction of RNA binding sites in proteins using SVM and profiles.
    Wang Y; Xue Z; Shen G; Xu J
    Amino Acids; 2008 Aug; 35(2):295-302. PubMed ID: 18235992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Support vector machine applications in bioinformatics.
    Byvatov E; Schneider G
    Appl Bioinformatics; 2003; 2(2):67-77. PubMed ID: 15130823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A statistical approach for 5' splice site prediction using short sequence motifs and without encoding sequence data.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    BMC Bioinformatics; 2014 Nov; 15():362. PubMed ID: 25420551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SpliceIT: a hybrid method for splice signal identification based on probabilistic and biological inference.
    Malousi A; Chouvarda I; Koutkias V; Kouidou S; Maglaveras N
    J Biomed Inform; 2010 Apr; 43(2):208-17. PubMed ID: 19800027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel computational method for the identification of plant alternative splice sites.
    Cui Y; Han J; Zhong D; Liu R
    Biochem Biophys Res Commun; 2013 Feb; 431(2):221-4. PubMed ID: 23313482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of N-linked glycosylation sites using position relative features and statistical moments.
    Akmal MA; Rasool N; Khan YD
    PLoS One; 2017; 12(8):e0181966. PubMed ID: 28797096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.