These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12485645)

  • 1. A new parametric approach for modeling hip forces during gait.
    Hurwitz DE; Foucher KC; Andriacchi TP
    J Biomech; 2003 Jan; 36(1):113-9. PubMed ID: 12485645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb.
    Stansfield BW; Nicol AC; Paul JP; Kelly IG; Graichen F; Bergmann G
    J Biomech; 2003 Jul; 36(7):929-36. PubMed ID: 12757801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring functional outcome after total hip replacement with subject-specific hip joint loading.
    Weber T; Dendorfer S; Dullien S; Grifka J; Verkerke GJ; Renkawitz T
    Proc Inst Mech Eng H; 2012 Dec; 226(12):939-46. PubMed ID: 23636957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative importance of gait vs. joint positioning on hip contact forces after total hip replacement.
    Foucher KC; Hurwitz DE; Wimmer MA
    J Orthop Res; 2009 Dec; 27(12):1576-82. PubMed ID: 19514072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of muscle loading at the hip joint for use in pre-clinical testing.
    Heller MO; Bergmann G; Kassi JP; Claes L; Haas NP; Duda GN
    J Biomech; 2005 May; 38(5):1155-63. PubMed ID: 15797596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction.
    Stolk J; Verdonschot N; Huiskes R
    J Biomech; 2001 Jul; 34(7):917-26. PubMed ID: 11410175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aberrant pelvis and hip kinematics impair hip loading before and after total hip replacement.
    Lenaerts G; Mulier M; Spaepen A; Van der Perre G; Jonkers I
    Gait Posture; 2009 Oct; 30(3):296-302. PubMed ID: 19560359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subject-specific hip geometry affects predicted hip joint contact forces during gait.
    Lenaerts G; De Groote F; Demeulenaere B; Mulier M; Van der Perre G; Spaepen A; Jonkers I
    J Biomech; 2008; 41(6):1243-52. PubMed ID: 18346745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No effect of femoral offset on bone implant micromotion in an experimental model.
    Amirouche F; Solitro G; Walia A
    Orthop Traumatol Surg Res; 2016 May; 102(3):379-85. PubMed ID: 26970866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do gait adaptations during stair climbing result in changes in implant forces in subjects with total hip replacements compared to normal subjects?
    Foucher KC; Hurwitz DE; Wimmer MA
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):754-61. PubMed ID: 18433952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement.
    Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S
    J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review: biomechanical issues in total hip replacement.
    Ong KL; Manley MT; Nevelos J; Greene K
    Surg Technol Int; 2012 Dec; 22():222-8. PubMed ID: 23023572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of toe marker placement error on joint kinematics and muscle forces using OpenSim gait simulation.
    Xu H; Merryweather A; Bloswick D; Mao Q; Wang T
    Biomed Mater Eng; 2015; 26 Suppl 1():S685-91. PubMed ID: 26406064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term hip loading in unilateral total hip replacement patients is no different between limbs or compared to healthy controls at similar walking speeds.
    O'Connor JD; Rutherford M; Bennett D; Hill JC; Beverland DE; Dunne NJ; Lennon AB
    J Biomech; 2018 Oct; 80():8-15. PubMed ID: 30227951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of hip implant alignment on muscle and joint loading during dynamic activities.
    Myers CA; Laz PJ; Shelburne KB; Judd DL; Huff DN; Winters JD; Stevens-Lapsley JE; Rullkoetter PJ
    Clin Biomech (Bristol, Avon); 2018 Mar; 53():93-100. PubMed ID: 29482087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking.
    Fraysse F; Dumas R; Cheze L; Wang X
    J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of maximum isometric muscle force scaling on estimated muscle forces from musculoskeletal models of children with cerebral palsy.
    Kainz H; Goudriaan M; Falisse A; Huenaerts C; Desloovere K; De Groote F; Jonkers I
    Gait Posture; 2018 Sep; 65():213-220. PubMed ID: 30558934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of individual muscles to hip joint contact force in normal walking.
    Correa TA; Crossley KM; Kim HJ; Pandy MG
    J Biomech; 2010 May; 43(8):1618-22. PubMed ID: 20176362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait.
    Moissenet F; Chèze L; Dumas R
    J Biomech; 2014 Jan; 47(1):50-8. PubMed ID: 24210475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.