These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 12486044)

  • 1. Mutational analysis of a conserved signal-transducing element: the HAMP linker of the Escherichia coli nitrate sensor NarX.
    Appleman JA; Stewart V
    J Bacteriol; 2003 Jan; 185(1):89-97. PubMed ID: 12486044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases.
    Appleman JA; Chen LL; Stewart V
    J Bacteriol; 2003 Aug; 185(16):4872-82. PubMed ID: 12897007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A zipped-helix cap potentiates HAMP domain control of chemoreceptor signaling.
    Flack CE; Parkinson JS
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3519-E3528. PubMed ID: 29581254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The S helix mediates signal transmission as a HAMP domain coiled-coil extension in the NarX nitrate sensor from Escherichia coli K-12.
    Stewart V; Chen LL
    J Bacteriol; 2010 Feb; 192(3):734-45. PubMed ID: 19966007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of the HAMP domain of the Aer aerotaxis sensor localizes flavin adenine dinucleotide-binding determinants to the AS-2 helix.
    Ma Q; Johnson MS; Taylor BL
    J Bacteriol; 2005 Jan; 187(1):193-201. PubMed ID: 15601703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of the connector segment in the HAMP domain of Tsr, the Escherichia coli serine chemoreceptor.
    Ames P; Zhou Q; Parkinson JS
    J Bacteriol; 2008 Oct; 190(20):6676-85. PubMed ID: 18621896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The NarX and NarQ sensor-transmitter proteins of Escherichia coli each require two conserved histidines for nitrate-dependent signal transduction to NarL.
    Cavicchioli R; Schröder I; Constanti M; Gunsalus RP
    J Bacteriol; 1995 May; 177(9):2416-24. PubMed ID: 7730273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis reveals functional similarity between NARX, a nitrate sensor in Escherichia coli K-12, and the methyl-accepting chemotaxis proteins.
    Collins LA; Egan SM; Stewart V
    J Bacteriol; 1992 Jun; 174(11):3667-75. PubMed ID: 1592821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitrate-dependent signal transduction and gene regulation.
    Cavicchioli R; Chiang RC; Kalman LV; Gunsalus RP
    Mol Microbiol; 1996 Sep; 21(5):901-11. PubMed ID: 8885262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HAMP domain-mediated signal transduction probed with a mycobacterial adenylyl cyclase as a reporter.
    Mondéjar LG; Lupas A; Schultz A; Schultz JE
    J Biol Chem; 2012 Jan; 287(2):1022-31. PubMed ID: 22094466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the HAMP domain region of sensory rhodopsin transducers in signal transduction.
    Gushchin IY; Gordeliy VI; Grudinin S
    Biochemistry; 2011 Feb; 50(4):574-80. PubMed ID: 21162553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination between structurally related ligands nitrate and nitrite controls autokinase activity of the NarX transmembrane signal transducer of Escherichia coli K-12.
    Williams SB; Stewart V
    Mol Microbiol; 1997 Dec; 26(5):911-25. PubMed ID: 9426129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 'Locked-on' and 'locked-off' signal transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX sensors affect nitrate- and nitrite-dependent regulation by NarL and NarP.
    Chiang RC; Cavicchioli R; Gunsalus RP
    Mol Microbiol; 1997 Jun; 24(5):1049-60. PubMed ID: 9220011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane signaling in chimeras of the Escherichia coli aspartate and serine chemotaxis receptors and bacterial class III adenylyl cyclases.
    Kanchan K; Linder J; Winkler K; Hantke K; Schultz A; Schultz JE
    J Biol Chem; 2010 Jan; 285(3):2090-9. PubMed ID: 19923210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Hinges in Bacterial Chemoreceptors.
    Akkaladevi N; Bunyak F; Stalla D; White TA; Hazelbauer GL
    J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29229700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional studies of the HAMP domain of EnvZ, an osmosensing transmembrane histidine kinase in Escherichia coli.
    Kishii R; Falzon L; Yoshida T; Kobayashi H; Inouye M
    J Biol Chem; 2007 Sep; 282(36):26401-8. PubMed ID: 17635923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The S-helix determines the signal in a Tsr receptor/adenylyl cyclase reporter.
    Winkler K; Schultz A; Schultz JE
    J Biol Chem; 2012 May; 287(19):15479-88. PubMed ID: 22427653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal-dependent phosphorylation of the membrane-bound NarX two-component sensor-transmitter protein of Escherichia coli: nitrate elicits a superior anion ligand response compared to nitrite.
    Lee AI; Delgado A; Gunsalus RP
    J Bacteriol; 1999 Sep; 181(17):5309-16. PubMed ID: 10464202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensor Histidine Kinase NarQ Activates via Helical Rotation, Diagonal Scissoring, and Eventually Piston-Like Shifts.
    Gushchin I; Orekhov P; Melnikov I; Polovinkin V; Yuzhakova A; Gordeliy V
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32354084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional suppression of HAMP domain signaling defects in the E. coli serine chemoreceptor.
    Lai RZ; Parkinson JS
    J Mol Biol; 2014 Oct; 426(21):3642-55. PubMed ID: 25134756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.