BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 12486152)

  • 1. Active contribution of dendrites to the tonic and trimodal patterns of activity in cerebellar Purkinje neurons.
    Womack M; Khodakhah K
    J Neurosci; 2002 Dec; 22(24):10603-12. PubMed ID: 12486152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic and dendritic small-conductance calcium-activated potassium channels regulate the output of cerebellar Purkinje neurons.
    Womack MD; Khodakhah K
    J Neurosci; 2003 Apr; 23(7):2600-7. PubMed ID: 12684445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic control of spontaneous bursting in cerebellar Purkinje cells.
    Womack MD; Khodakhah K
    J Neurosci; 2004 Apr; 24(14):3511-21. PubMed ID: 15071098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large conductance calcium-activated potassium channels affect both spontaneous firing and intracellular calcium concentration in cerebellar Purkinje neurons.
    Womack MD; Hoang C; Khodakhah K
    Neuroscience; 2009 Sep; 162(4):989-1000. PubMed ID: 19446607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased firing frequency of spontaneous action potentials in cerebellar Purkinje neurons of db/db mice results from altered auto-rhythmicity and diminished GABAergic tonic inhibition.
    Forero-Vivas ME; Hernández-Cruz A
    Gen Physiol Biophys; 2014; 33(1):29-41. PubMed ID: 24334530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Period doubling of calcium spike firing in a model of a Purkinje cell dendrite.
    Mandelblat Y; Etzion Y; Grossman Y; Golomb D
    J Comput Neurosci; 2001; 11(1):43-62. PubMed ID: 11524577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in Spontaneous firing patterns of cerebellar Purkinje cells in p75 knockout mice.
    Tian J; Tep C; Zhu MX; Yoon SO
    Cerebellum; 2013 Jun; 12(3):300-3. PubMed ID: 23307658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model.
    De Schutter E
    J Neurophysiol; 1998 Aug; 80(2):504-19. PubMed ID: 9705446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The output signal of Purkinje cells of the cerebellum and circadian rhythmicity.
    Mordel J; Karnas D; Pévet P; Isope P; Challet E; Meissl H
    PLoS One; 2013; 8(3):e58457. PubMed ID: 23505510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and morphological development of the rat cerebellar Purkinje cell.
    McKay BE; Turner RW
    J Physiol; 2005 Sep; 567(Pt 3):829-50. PubMed ID: 16002452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iberiotoxin-sensitive large conductance Ca2+ -dependent K+ (BK) channels regulate the spike configuration in the burst firing of cerebellar Purkinje neurons.
    Haghdoost-Yazdi H; Janahmadi M; Behzadi G
    Brain Res; 2008 May; 1212():1-8. PubMed ID: 18439989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sodium-potassium pump controls the intrinsic firing of the cerebellar Purkinje neuron.
    Forrest MD; Wall MJ; Press DA; Feng J
    PLoS One; 2012; 7(12):e51169. PubMed ID: 23284664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kv1 channels selectively prevent dendritic hyperexcitability in rat Purkinje cells.
    Khavandgar S; Walter JT; Sageser K; Khodakhah K
    J Physiol; 2005 Dec; 569(Pt 2):545-57. PubMed ID: 16210348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study.
    Miyasho T; Takagi H; Suzuki H; Watanabe S; Inoue M; Kudo Y; Miyakawa H
    Brain Res; 2001 Feb; 891(1-2):106-15. PubMed ID: 11164813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kv1 K+ channels control Purkinje cell output to facilitate postsynaptic rebound discharge in deep cerebellar neurons.
    McKay BE; Molineux ML; Mehaffey WH; Turner RW
    J Neurosci; 2005 Feb; 25(6):1481-92. PubMed ID: 15703402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):401-19. PubMed ID: 8158238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response.
    Fiala JC; Grossberg S; Bullock D
    J Neurosci; 1996 Jun; 16(11):3760-74. PubMed ID: 8642419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices.
    Llinás R; Sugimori M
    J Physiol; 1980 Aug; 305():197-213. PubMed ID: 7441553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STIM1 Regulates Somatic Ca
    Ryu C; Jang DC; Jung D; Kim YG; Shim HG; Ryu HH; Lee YS; Linden DJ; Worley PF; Kim SJ
    J Neurosci; 2017 Sep; 37(37):8876-8894. PubMed ID: 28821659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased calcium-dependent K+ channel activity contributes to the maturation of cellular firing patterns in developing cerebellar Purkinje neurons.
    Muller YL; Yool AJ
    Brain Res Dev Brain Res; 1998 Jun; 108(1-2):193-203. PubMed ID: 9693796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.