BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12486521)

  • 1. Verification of a novel NADH-binding motif: combinatorial mutagenesis of three amino acids in the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase.
    Banta S; Anderson S
    J Mol Evol; 2002 Dec; 55(6):623-31. PubMed ID: 12486521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration of the specificity of the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase A.
    Banta S; Swanson BA; Wu S; Jarnagin A; Anderson S
    Protein Eng; 2002 Feb; 15(2):131-40. PubMed ID: 11917149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing an artificial metabolic pathway: engineering the cofactor specificity of Corynebacterium 2,5-diketo-D-gluconic acid reductase for use in vitamin C biosynthesis.
    Banta S; Swanson BA; Wu S; Jarnagin A; Anderson S
    Biochemistry; 2002 May; 41(20):6226-36. PubMed ID: 12009883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural alteration of cofactor specificity in Corynebacterium 2,5-diketo-D-gluconic acid reductase.
    Sanli G; Banta S; Anderson S; Blaber M
    Protein Sci; 2004 Feb; 13(2):504-12. PubMed ID: 14718658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 A resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis.
    Dambe TR; Kühn AM; Brossette T; Giffhorn F; Scheidig AJ
    Biochemistry; 2006 Aug; 45(33):10030-42. PubMed ID: 16906761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of 2,5-diketo-D-gluconic acid reductase A complexed with NADPH at 2.1-A resolution.
    Khurana S; Powers DB; Anderson S; Blaber M
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):6768-73. PubMed ID: 9618487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of in vitro enzymatic production of 2-Keto-L-gulonic acid using NAD(H) or NADP(H) as cofactors.
    Banta S; Boston M; Jarnagin A; Anderson S
    Metab Eng; 2002 Oct; 4(4):273-84. PubMed ID: 12646322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of Glycine 179 modulates both catalytic efficiency and reduced pyridine nucleotide specificity in cytochrome b5 reductase.
    Roma GW; Crowley LJ; Davis CA; Barber MJ
    Biochemistry; 2005 Oct; 44(41):13467-76. PubMed ID: 16216070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the coenzyme and substrate binding events of CDP-D-glucose 4,6-dehydratase: mechanistic implications.
    He X; Thorson JS; Liu HW
    Biochemistry; 1996 Apr; 35(15):4721-31. PubMed ID: 8664262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular modeling of substrate binding in wild-type and mutant Corynebacteria 2,5-diketo-D-gluconate reductases.
    Khurana S; Sanli G; Powers DB; Anderson S; Blaber M
    Proteins; 2000 Apr; 39(1):68-75. PubMed ID: 10737928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cloning and expression in E. coli of 2,5-DKG reductase I from Corynebacterium].
    Chen C; Yin G
    Wei Sheng Wu Xue Bao; 1998 Dec; 38(6):435-40. PubMed ID: 12548922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, expression and characterization of a putative 2,5-diketo-D-gluconic acid reductase in Comamonas testosteroni.
    Chen Y; Ji W; Zhang H; Zhang X; Yu Y
    Chem Biol Interact; 2015 Jun; 234():229-35. PubMed ID: 25614138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modified consensus approach to mutagenesis inverts the cofactor specificity of Bacillus stearothermophilus lactate dehydrogenase.
    Flores H; Ellington AD
    Protein Eng Des Sel; 2005 Aug; 18(8):369-77. PubMed ID: 16012175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of 2-Keto-L-Gulonate, an Intermediate in L-Ascorbate Synthesis, by a Genetically Modified Erwinia herbicola.
    Anderson S; Marks CB; Lazarus R; Miller J; Stafford K; Seymour J; Light D; Rastetter W; Estell D
    Science; 1985 Oct; 230(4722):144-9. PubMed ID: 17842676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA from uncultured organisms as a source of 2,5-diketo-D-gluconic acid reductases.
    Eschenfeldt WH; Stols L; Rosenbaum H; Khambatta ZS; Quaite-Randall E; Wu S; Kilgore DC; Trent JD; Donnelly MI
    Appl Environ Microbiol; 2001 Sep; 67(9):4206-14. PubMed ID: 11526025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase.
    Cho H; Hamza A; Zhan CG; Tai HH
    Arch Biochem Biophys; 2005 Jan; 433(2):447-53. PubMed ID: 15581601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aminobacter aminovorans NADH:flavin oxidoreductase His140: a highly conserved residue critical for NADH binding and utilization.
    Russell TR; Tu SC
    Biochemistry; 2004 Oct; 43(40):12887-93. PubMed ID: 15461461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis.
    Marohnic CC; Crowley LJ; Davis CA; Smith ET; Barber MJ
    Biochemistry; 2005 Feb; 44(7):2449-61. PubMed ID: 15709757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modeling studies of L-arabinitol 4-dehydrogenase of Hypocrea jecorina: its binding interactions with substrate and cofactor.
    Tiwari M; Lee JK
    J Mol Graph Model; 2010 Jun; 28(8):707-13. PubMed ID: 20171913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.