BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 12486723)

  • 41. Toward predicting protein topology: an approach to identifying beta hairpins.
    de la Cruz X; Hutchinson EG; Shepherd A; Thornton JM
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11157-62. PubMed ID: 12177429
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A hybrid genetic-neural system for predicting protein secondary structure.
    Armano G; Mancosu G; Milanesi L; Orro A; Saba M; Vargiu E
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S3. PubMed ID: 16351752
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel method for prediction of protein interaction sites based on integrated RBF neural networks.
    Chen Y; Xu J; Yang B; Zhao Y; He W
    Comput Biol Med; 2012 Apr; 42(4):402-7. PubMed ID: 22226645
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural relatedness via flow networks in protein sequence space.
    Frenkel ZM; Frenkel ZM; Trifonov EN; Snir S
    J Theor Biol; 2009 Oct; 260(3):438-44. PubMed ID: 19591846
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0.
    Dehouck Y; Grosfils A; Folch B; Gilis D; Bogaerts P; Rooman M
    Bioinformatics; 2009 Oct; 25(19):2537-43. PubMed ID: 19654118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PROBE: a computer program employing an integrated neural network approach to protein structure prediction.
    Holbrook SR; Dubchak I; Kim SH
    Biotechniques; 1993 Jun; 14(6):984-9. PubMed ID: 8333967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of factors that induce cysteine bonding state.
    Karami Z; Abdolmaleki P; Rezaei MA; Jahandideh S; Asadabadi EB
    Comput Biol Med; 2009 Apr; 39(4):332-9. PubMed ID: 19246035
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein secondary structure prediction with partially recurrent neural networks.
    Reczko M
    SAR QSAR Environ Res; 1993; 1(2-3):153-9. PubMed ID: 8790631
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The importance of larger data sets for protein secondary structure prediction with neural networks.
    Chandonia JM; Karplus M
    Protein Sci; 1996 Apr; 5(4):768-74. PubMed ID: 8845767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of protein secondary structure by an enhanced neural network.
    Vieth M; KoliƄski A
    Acta Biochim Pol; 1991; 38(3):335-51. PubMed ID: 1799113
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A neural network model for the prediction of membrane-spanning amino acid sequences.
    Lohmann R; Schneider G; Behrens D; Wrede P
    Protein Sci; 1994 Sep; 3(9):1597-601. PubMed ID: 7833818
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Data-driven model for the prediction of protein transmembrane regions.
    Roy Choudhury A; Novic M
    SAR QSAR Environ Res; 2009 Oct; 20(7-8):741-54. PubMed ID: 20024807
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of human protein function from post-translational modifications and localization features.
    Jensen LJ; Gupta R; Blom N; Devos D; Tamames J; Kesmir C; Nielsen H; Staerfeldt HH; Rapacki K; Workman C; Andersen CA; Knudsen S; Krogh A; Valencia A; Brunak S
    J Mol Biol; 2002 Jun; 319(5):1257-65. PubMed ID: 12079362
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sequence determinants of protein architecture.
    Rackovsky S
    Proteins; 2013 Oct; 81(10):1681-5. PubMed ID: 23720385
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An improved pair potential to recognize native protein folds.
    Bauer A; Beyer A
    Proteins; 1994 Mar; 18(3):254-61. PubMed ID: 8202466
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wavelet transforms for the characterization and detection of repeating motifs.
    Murray KB; Gorse D; Thornton JM
    J Mol Biol; 2002 Feb; 316(2):341-63. PubMed ID: 11851343
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A simple method based on multiple alignment and phylogeny to derive a correlation between the protein fold and sequence via motif search.
    Rizvi SB; Shukla AK; Dubey VK
    Interdiscip Sci; 2009 Sep; 1(3):235-43. PubMed ID: 20640843
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting protein-protein interactions using graph invariants and a neural network.
    Knisley D; Knisley J
    Comput Biol Chem; 2011 Apr; 35(2):108-13. PubMed ID: 21555249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. De novo protein structure prediction using ultra-fast molecular dynamics simulation.
    Cheung NJ; Yu W
    PLoS One; 2018; 13(11):e0205819. PubMed ID: 30458007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploring protein sequence space using knowledge-based potentials.
    Babajide A; Farber R; Hofacker IL; Inman J; Lapedes AS; Stadler PF
    J Theor Biol; 2001 Sep; 212(1):35-46. PubMed ID: 11527443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.