These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 12486723)

  • 81. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.
    Darsey JA; Griffin WO; Joginipelli S; Melapu VK
    Methods Mol Biol; 2015; 1260():269-83. PubMed ID: 25502388
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Prediction of novel archaeal enzymes from sequence-derived features.
    Jensen LJ; Skovgaard M; Brunak S
    Protein Sci; 2002 Dec; 11(12):2894-8. PubMed ID: 12441387
    [TBL] [Abstract][Full Text] [Related]  

  • 83. SPIN2: Predicting sequence profiles from protein structures using deep neural networks.
    O'Connell J; Li Z; Hanson J; Heffernan R; Lyons J; Paliwal K; Dehzangi A; Yang Y; Zhou Y
    Proteins; 2018 Jun; 86(6):629-633. PubMed ID: 29508448
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Neural network pairwise interaction fields for protein model quality assessment and ab initio protein folding.
    Martin AJ; Mirabello C; Pollastri G
    Curr Protein Pept Sci; 2011 Sep; 12(6):549-62. PubMed ID: 21787307
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Artificial neural network model for predicting alpha-turn types.
    Cai YD; Chou KC
    Anal Biochem; 1999 Mar; 268(2):407-9. PubMed ID: 10075834
    [No Abstract]   [Full Text] [Related]  

  • 86. Protein fold recognition based on functional domain composition.
    Wang Q; Yan J; Li X
    Comput Biol Chem; 2014 Feb; 48():71-6. PubMed ID: 24412838
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Protein folds recognized by an intelligent predictor based-on evolutionary and structural information.
    Cheung NJ; Ding XM; Shen HB
    J Comput Chem; 2016 Feb; 37(4):426-36. PubMed ID: 26502837
    [TBL] [Abstract][Full Text] [Related]  

  • 88. [Modern methods for protein fold recognition].
    Ota M
    Tanpakushitsu Kakusan Koso; 2002 Feb; 47(2):181-6. PubMed ID: 11840680
    [No Abstract]   [Full Text] [Related]  

  • 89. An information-based neural approach to constraint satisfaction.
    Jönsson H; Söderberg B
    Neural Comput; 2001 Aug; 13(8):1827-38. PubMed ID: 11506672
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Prediction of the location and type of beta-turns in proteins using neural networks.
    Shepherd AJ; Gorse D; Thornton JM
    Protein Sci; 1999 May; 8(5):1045-55. PubMed ID: 10338015
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Artificial neural networks for molecular sequence analysis.
    Wu CH
    Comput Chem; 1997; 21(4):237-56. PubMed ID: 9415987
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Prediction of protein folding class using global description of amino acid sequence.
    Dubchak I; Muchnik I; Holbrook SR; Kim SH
    Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8700-4. PubMed ID: 7568000
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Protein sub-cellular localisation prediction by analysis of short-range residue correlations.
    Guo J; Lin Y; Sun Z
    Int J Bioinform Res Appl; 2006; 2(2):105-18. PubMed ID: 18048156
    [TBL] [Abstract][Full Text] [Related]  

  • 94. REPETITA: detection and discrimination of the periodicity of protein solenoid repeats by discrete Fourier transform.
    Marsella L; Sirocco F; Trovato A; Seno F; Tosatto SC
    Bioinformatics; 2009 Jun; 25(12):i289-95. PubMed ID: 19478001
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Motif-based protein sequence classification using neural networks.
    Blekas K; Fotiadis DI; Likas A
    J Comput Biol; 2005; 12(1):64-82. PubMed ID: 15725734
    [TBL] [Abstract][Full Text] [Related]  

  • 96. [Getting functional information from your sequence by the use of protein signature databases].
    Kobayashi K
    Tanpakushitsu Kakusan Koso; 2001 Nov; 46(14):2098-103. PubMed ID: 11766615
    [No Abstract]   [Full Text] [Related]  

  • 97. A fast algorithm for low-resolution protein structure prediction.
    Bondugula R; Xu D; Shang Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5826-9. PubMed ID: 17946724
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Exploring alternative knowledge representations for protein secondary-structure prediction.
    Midic U; Dunker AK; Obradovic Z
    Int J Data Min Bioinform; 2007; 1(3):286-313. PubMed ID: 18399076
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Protein Secondary Structure Prediction Based on Data Partition and Semi-Random Subspace Method.
    Ma Y; Liu Y; Cheng J
    Sci Rep; 2018 Jun; 8(1):9856. PubMed ID: 29959372
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Atomic interaction networks in the core of protein domains and their native folds.
    Soundararajan V; Raman R; Raguram S; Sasisekharan V; Sasisekharan R
    PLoS One; 2010 Feb; 5(2):e9391. PubMed ID: 20186337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.