These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12487318)

  • 1. Use of hydrochloric acid for determinining solid-phase arsenic partitioning in sulfidic sediments.
    Wilkin RT; Ford RG
    Environ Sci Technol; 2002 Nov; 36(22):4921-7. PubMed ID: 12487318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of an arsenic sequential extraction method for evaluating mobility in sediments.
    Keon NE; Swartz CH; Brabander DJ; Harvey C; Hemond HF
    Environ Sci Technol; 2001 Jul; 35(13):2778-84. PubMed ID: 11452609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenite retention mechanisms within estuarine sediments of Pescadero, CA.
    Bostick BC; Chen C; Fendorf S
    Environ Sci Technol; 2004 Jun; 38(12):3299-304. PubMed ID: 15260327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of acid-volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melita plumulosa.
    Simpson SL; Ward D; Strom D; Jolley DF
    Chemosphere; 2012 Aug; 88(8):953-61. PubMed ID: 22494530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical binding of heavy metals in anoxic river sediments.
    Yu KC; Tsai LJ; Chen SH; Ho ST
    Water Res; 2001 Dec; 35(17):4086-94. PubMed ID: 11791838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: laboratory experiment and model development.
    Hong YS; Kinney KA; Reible DD
    Environ Toxicol Chem; 2011 Mar; 30(3):564-75. PubMed ID: 21298701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemical control processes and potential sediment toxicity in a mine-impacted lake.
    Adeleke SB; Svensson BH; Yekta SS; Adeleye MM
    Environ Toxicol Chem; 2016 Mar; 35(3):563-72. PubMed ID: 26313659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of acid volatile sulfides and simultaneously extracted metals on the bioavailability and toxicity of a mixture of sediment-associated Cd, Ni, and Zn to polychaetes Neanthes arenaceodentata.
    Lee JS; Lee JH
    Sci Total Environ; 2005 Feb; 338(3):229-41. PubMed ID: 15713331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution kinetics of heavy metals in Dutch carbonate- and sulfide-rich freshwater sediments.
    Buykx SE; van den Hoop MA; Loch JP
    J Environ Qual; 2002; 31(2):573-80. PubMed ID: 11931449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting effects of bioturbation on metal toxicity of contaminated sediments results in misleading interpretation of the AVS-SEM metal-sulfide paradigm.
    Remaili TM; Yin N; Bennett WW; Simpson SL; Jolley DF; Welsh DT
    Environ Sci Process Impacts; 2018 Sep; 20(9):1285-1296. PubMed ID: 30175344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China.
    Fang T; Li X; Zhang G
    Ecotoxicol Environ Saf; 2005 Jul; 61(3):420-31. PubMed ID: 15922809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel partitioning in formulated and natural freshwater sediments.
    Doig LE; Liber K
    Chemosphere; 2006 Feb; 62(6):968-79. PubMed ID: 16122779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of spiked metals from contaminated coastal sediments: a comparison of different methods.
    Fan W; Wang WX
    Environ Toxicol Chem; 2003 Nov; 22(11):2659-66. PubMed ID: 14587905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic mobilization from sediments in microcosms under sulfate reduction.
    Sun J; Quicksall AN; Chillrud SN; Mailloux BJ; Bostick BC
    Chemosphere; 2016 Jun; 153():254-61. PubMed ID: 27037658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of thioarsenite formation on arsenic(III) toxicity.
    Rader KJ; Dombrowski PM; Farley KJ; Mahony JD; Di Toro DM
    Environ Toxicol Chem; 2004 Jul; 23(7):1649-54. PubMed ID: 15230317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rates of hexavalent chromium reduction in anoxic estuarine sediments: pH effects and the role of acid volatile sulfides.
    Graham AM; Bouwer EJ
    Environ Sci Technol; 2010 Jan; 44(1):136-42. PubMed ID: 20039744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preservation of sulfidic waters containing dissolved As(III).
    Smieja JA; Wilkin RT
    J Environ Monit; 2003 Dec; 5(6):913-6. PubMed ID: 14710932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-volatile sulfide oxidation in coastal flood plain drains: iron-sulfur cycling and effects on water quality.
    Burton ED; Bush RT; Sullivan LA
    Environ Sci Technol; 2006 Feb; 40(4):1217-22. PubMed ID: 16572778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions.
    O'Day PA; Vlassopoulos D; Root R; Rivera N
    Proc Natl Acad Sci U S A; 2004 Sep; 101(38):13703-8. PubMed ID: 15356340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.