These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12487418)

  • 1. Theory for reactive solute transport through clay membrane barriers.
    Malusis MA; Shackelford CD
    J Contam Hydrol; 2002 Dec; 59(3-4):291-316. PubMed ID: 12487418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical review of coupled flux formulations for clay membranes based on nonequilibrium thermodynamics.
    Malusis MA; Shackelford CD; Maneval JE
    J Contam Hydrol; 2012 Sep; 138-139():40-59. PubMed ID: 22797191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explicit and implicit coupling during solute transport through clay membrane barriers.
    Malusis MA; Shackelford CD
    J Contam Hydrol; 2004 Aug; 72(1-4):259-85. PubMed ID: 15240176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling effects during steady-state solute diffusion through a semipermeable clay membrane.
    Malusis MA; Shackelford CD
    Environ Sci Technol; 2002 Mar; 36(6):1312-9. PubMed ID: 11944686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ion diffusion model in semi-permeable clay materials.
    Liu C
    Environ Sci Technol; 2007 Aug; 41(15):5403-9. PubMed ID: 17822109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity.
    Compère F; Porel G; Delay F
    J Contam Hydrol; 2001 May; 49(1-2):1-21. PubMed ID: 11351511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport.
    Soler JM
    J Contam Hydrol; 2001 Dec; 53(1-2):63-84. PubMed ID: 11816995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional fully coupled hydro-mechanical-chemical model for solute transport under mechanical and osmotic loading conditions.
    Masum SA; Zhang Z; Tian G; Sultana M
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):5983-6000. PubMed ID: 35986848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral.
    El-Bayaa AA; Badawy NA; Alkhalik EA
    J Hazard Mater; 2009 Oct; 170(2-3):1204-9. PubMed ID: 19524366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloride transport by self-exchange and by KCl salt diffusion in gramicidin-treated red blood cells.
    Cass A; Dalmark M
    Acta Physiol Scand; 1979 Nov; 107(3):193-203. PubMed ID: 94237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of cation exchange on clay release and colloid-facilitated transport in porous media.
    Bradford SA; Kim H
    J Environ Qual; 2010; 39(6):2040-6. PubMed ID: 21284301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The performance of natural clay as a barrier to the diffusion of municipal solid waste landfill leachates.
    Cuevas J; Ruiz AI; de Soto IS; Sevilla T; Procopio JR; Da Silva P; Gismera MJ; Regadío M; Sánchez Jiménez N; Rodríguez Rastrero M; Leguey S
    J Environ Manage; 2012 Mar; 95 Suppl():S175-81. PubMed ID: 21420226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in Opalinus Clay.
    Appelo CA; Wersin P
    Environ Sci Technol; 2007 Jul; 41(14):5002-7. PubMed ID: 17711215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.
    Fukushi K; Sakai H; Itono T; Tamura A; Arai S
    Environ Sci Technol; 2014 Sep; 48(18):10743-9. PubMed ID: 25144123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ experiment to determine advective-diffusive controls on solute transport in a clay-rich aquitard.
    Barbour SL; Hendry MJ; Wassenaar LI
    J Contam Hydrol; 2012 Apr; 131(1-4):79-88. PubMed ID: 22343012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geochemical modulation of pesticide sorption on smectite clay.
    Li H; Teppen BJ; Laird DA; Johnston CT; Boyd SA
    Environ Sci Technol; 2004 Oct; 38(20):5393-9. PubMed ID: 15543742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of soluble organics from water by a hybrid process of clay adsorption and membrane filtration.
    Lin SH; Hsiao RC; Juang RS
    J Hazard Mater; 2006 Jul; 135(1-3):134-40. PubMed ID: 16359788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat of transport of air in clay.
    Minkin L; Shapovalov AS
    Radiat Prot Dosimetry; 2007; 123(2):221-5. PubMed ID: 16936288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly charged swelling mica-type clays for selective Cu exchange.
    Ravella R; Komarneni S; Martinez CE
    Environ Sci Technol; 2008 Jan; 42(1):113-8. PubMed ID: 18350884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of membrane potential on the development of chemical osmotic pressure in compacted clay.
    Bader S; Heister K
    J Colloid Interface Sci; 2006 May; 297(1):329-40. PubMed ID: 16289192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.