These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 12487801)
1. On unique representations of certain dynamical systems produced by continuous-time recurrent neural networks. Kimura M Neural Comput; 2002 Dec; 14(12):2981-96. PubMed ID: 12487801 [TBL] [Abstract][Full Text] [Related]
2. Learning dynamical systems by recurrent neural networks from orbits. Kimura M; Nakano R Neural Netw; 1998 Dec; 11(9):1589-1599. PubMed ID: 12662730 [TBL] [Abstract][Full Text] [Related]
7. Approximation of state-space trajectories by locally recurrent globally feed-forward neural networks. Patan K Neural Netw; 2008 Jan; 21(1):59-64. PubMed ID: 18158233 [TBL] [Abstract][Full Text] [Related]
8. Representations of continuous attractors of recurrent neural networks. Yu J; Yi Z; Zhang L IEEE Trans Neural Netw; 2009 Feb; 20(2):368-72. PubMed ID: 19150791 [TBL] [Abstract][Full Text] [Related]
9. Some characterizations of global exponential stability of a generic class of continuous-time recurrent neural networks. Wang L; Zhang R; Xu Z; Peng J IEEE Trans Syst Man Cybern B Cybern; 2009 Jun; 39(3):763-72. PubMed ID: 19336339 [TBL] [Abstract][Full Text] [Related]
10. Markovian architectural bias of recurrent neural networks. Tino P; Cernanský M; Benusková L IEEE Trans Neural Netw; 2004 Jan; 15(1):6-15. PubMed ID: 15387243 [TBL] [Abstract][Full Text] [Related]
11. Toward a new task assignment and path evolution (TAPE) for missile defense system (MDS) using intelligent adaptive SOM with recurrent neural networks (RNNs). Wang CH; Chen CY; Hung KN IEEE Trans Cybern; 2015 Jun; 45(6):1134-45. PubMed ID: 25148679 [TBL] [Abstract][Full Text] [Related]
12. On the partitioning capabilities of feedforward neural networks with sigmoid nodes. Koutroumbas K Neural Comput; 2003 Oct; 15(10):2457-81. PubMed ID: 14511529 [TBL] [Abstract][Full Text] [Related]
13. Random neural networks with synchronized interactions. Gelenbe E; Timotheou S Neural Comput; 2008 Sep; 20(9):2308-24. PubMed ID: 18386985 [TBL] [Abstract][Full Text] [Related]
14. Sufficient conditions for error backflow convergence in dynamical recurrent neural networks. Aussem A Neural Comput; 2002 Aug; 14(8):1907-27. PubMed ID: 12180407 [TBL] [Abstract][Full Text] [Related]
15. Bounds on the number of hidden neurons in three-layer binary neural networks. Zhang Z; Ma X; Yang Y Neural Netw; 2003 Sep; 16(7):995-1002. PubMed ID: 14692634 [TBL] [Abstract][Full Text] [Related]
16. Considerations in using recurrent neural networks to probe neural dynamics. Kao JC J Neurophysiol; 2019 Dec; 122(6):2504-2521. PubMed ID: 31619125 [TBL] [Abstract][Full Text] [Related]
17. Dimensionality of amino acid space and solvent accessibility prediction with neural networks. Araúzo-Bravo MJ; Ahmad S; Sarai A Comput Biol Chem; 2006 Apr; 30(2):160-8. PubMed ID: 16545617 [TBL] [Abstract][Full Text] [Related]