These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12488000)

  • 21. Dissecting the stability of a beta-hairpin peptide that folds in water: NMR and molecular dynamics analysis of the beta-turn and beta-strand contributions to folding.
    Griffiths-Jones SR; Maynard AJ; Searle MS
    J Mol Biol; 1999 Oct; 292(5):1051-69. PubMed ID: 10512702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dynamics simulations of unfolding and refolding of a beta-hairpin fragment of protein G.
    Pande VS; Rokhsar DS
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9062-7. PubMed ID: 10430895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can a continuum solvent model reproduce the free energy landscape of a beta -hairpin folding in water?
    Zhou R; Berne BJ
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12777-82. PubMed ID: 12242327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The turn sequence directs beta-strand alignment in designed beta-hairpins.
    de Alba E; Rico M; Jiménez MA
    Protein Sci; 1999 Nov; 8(11):2234-44. PubMed ID: 10595526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stabilization of alpha-helix structure by polar side-chain interactions: complex salt bridges, cation-pi interactions, and C-H em leader O H-bonds.
    Shi Z; Olson CA; Bell AJ; Kallenbach NR
    Biopolymers; 2001; 60(5):366-80. PubMed ID: 12115147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
    Ghosh T; Garde S; García AE
    Biophys J; 2003 Nov; 85(5):3187-93. PubMed ID: 14581218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nascent β-Hairpin Formation of a Natively Unfolded Peptide Reveals the Role of Hydrophobic Contacts.
    Chen W; Shi C; Shen J
    Biophys J; 2015 Aug; 109(3):630-8. PubMed ID: 26244744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions.
    Zuegg J; Gready JE
    Biochemistry; 1999 Oct; 38(42):13862-76. PubMed ID: 10529232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stabilization of the N-terminal beta-hairpin of ubiquitin by a terminal hydrophobic cluster.
    Riemen AJ; Waters ML
    Biopolymers; 2008; 90(3):394-8. PubMed ID: 17803200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of hydrophobic interactions and salt-bridges in beta-hairpin folding.
    Seshasayee AS; Raghunathan K; Sivaraman K; Pennathur G
    J Mol Model; 2006 Jan; 12(2):197-204. PubMed ID: 16231193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of salt on the formation of salt-bridges in β-hairpin peptides.
    Sukenik S; Boyarski Y; Harries D
    Chem Commun (Camb); 2014 Aug; 50(60):8193-6. PubMed ID: 24926740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges.
    Marti DN; Bosshard HR
    J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. beta-hairpin stability and folding: molecular dynamics studies of the first beta-hairpin of tendamistat.
    Bonvin AM; van Gunsteren WF
    J Mol Biol; 2000 Feb; 296(1):255-68. PubMed ID: 10656830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding beta-hairpin formation by molecular dynamics simulations of unfolding.
    Lee J; Shin S
    Biophys J; 2001 Nov; 81(5):2507-16. PubMed ID: 11606266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure change of β-hairpin induced by turn optimization: an enhanced sampling molecular dynamics simulation study.
    Shao Q; Yang L; Gao YQ
    J Chem Phys; 2011 Dec; 135(23):235104. PubMed ID: 22191904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interplay between hydrophobic cluster and loop propensity in beta-hairpin formation: a mechanistic study.
    Colombo G; De Mori GM; Roccatano D
    Protein Sci; 2003 Mar; 12(3):538-50. PubMed ID: 12592024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An account on the factors determining the extra stability of the
    Govind G; Nayana EC; Anjukandi P
    J Biomol Struct Dyn; 2022; 40(23):12841-12847. PubMed ID: 34570679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stability of cyclic beta-hairpins: asymmetric contributions from side chains of a hydrogen-bonded cross-strand residue pair.
    Russell SJ; Blandl T; Skelton NJ; Cochran AG
    J Am Chem Soc; 2003 Jan; 125(2):388-95. PubMed ID: 12517150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence dependence of beta-hairpin structure: comparison of a salt bridge and an aromatic interaction.
    Kiehna SE; Waters ML
    Protein Sci; 2003 Dec; 12(12):2657-67. PubMed ID: 14627727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of turn stability and side-chain hydrophobicity on the folding of β-structures.
    Shao Q; Wei H; Gao YQ
    J Mol Biol; 2010 Sep; 402(3):595-609. PubMed ID: 20804769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.