These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 12488314)

  • 1. Conformational changes in hemoglobin S (betaE6V) imposed by mutation of the beta Glu7-beta Lys132 salt bridge and detected by UV resonance Raman spectroscopy.
    Juszczak LJ; Fablet C; Baudin-Creuza V; Lesecq-Le Gall S; Hirsch RE; Nagel RL; Friedman JM; Pagnier J
    J Biol Chem; 2003 Feb; 278(9):7257-63. PubMed ID: 12488314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sickle Cell Hemoglobin with Mutation at αHis-50 Has Improved Solubility.
    Tam MF; Tam TC; Simplaceanu V; Ho NT; Zou M; Ho C
    J Biol Chem; 2015 Aug; 290(35):21762-72. PubMed ID: 26187468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of a recombinant human hemoglobin double mutant: sickle hemoglobin with Leu-88(beta) at the primary aggregation site substituted by Ala.
    Martin de Llano JJ; Manning JM
    Protein Sci; 1994 Aug; 3(8):1206-12. PubMed ID: 7987215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A.
    Peterson ES; Friedman JM
    Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real time monitoring of sickle cell hemoglobin fiber formation by UV resonance Raman spectroscopy.
    Knee KM; Mukerji I
    Biochemistry; 2009 Oct; 48(41):9903-11. PubMed ID: 19778007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemoglobin site-mutants reveal dynamical role of interhelical H-bonds in the allosteric pathway: time-resolved UV resonance Raman evidence for intra-dimer coupling.
    Balakrishnan G; Tsai CH; Wu Q; Case MA; Pevsner A; McLendon GL; Ho C; Spiro TG
    J Mol Biol; 2004 Jul; 340(4):857-68. PubMed ID: 15223326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of alpha 114 and beta 87 amino acid residues in the polymerization of hemoglobin S: implications for gene therapy.
    Ho C; Willis BF; Shen TJ; Dazhen NT; Sun DP; Tam MF; Suzuka SM; Fabry ME; Nagel RL
    J Mol Biol; 1996 Nov; 263(3):475-85. PubMed ID: 8918602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the A helix structure on the polymerization of hemoglobin S.
    Lesecq S; Baudin V; Kister J; Poyart C; Pagnier J
    J Biol Chem; 1997 Jun; 272(24):15242-6. PubMed ID: 9182548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interspecies hybrid HbS: complete neutralization of Val6(beta)-dependent polymerization of human beta-chain by pig alpha-chains.
    Rao MJ; Malavalli A; Manjula BN; Kumar R; Prabhakaran M; Sun DP; Ho NT; Ho C; Nagel RL; Acharya AS
    J Mol Biol; 2000 Jul; 300(5):1389-406. PubMed ID: 10903876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-quaternary structure of oxy human adult hemoglobin in the presence of two allosteric effectors, L35 and IHP.
    Kanaori K; Tajiri Y; Tsuneshige A; Ishigami I; Ogura T; Tajima K; Neya S; Yonetani T
    Biochim Biophys Acta; 2011 Oct; 1807(10):1253-61. PubMed ID: 21703224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymerization of recombinant hemoglobin F gamma E6V and hemoglobin F gamma E6V, gamma Q87T alone, and in mixtures with hemoglobin S.
    Adachi K; Pang J; Konitzer P; Surrey S
    Blood; 1996 Feb; 87(4):1617-24. PubMed ID: 8608256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of beta93 Cys in the inhibition of Hb S fiber formation.
    Knee KM; Roden CK; Flory MR; Mukerji I
    Biophys Chem; 2007 May; 127(3):181-93. PubMed ID: 17350155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced inhibition of polymerization of sickle cell hemoglobin in the presence of recombinant mutants of human fetal hemoglobin with substitutions at position 43 in the gamma-chain.
    Tam MF; Chen J; Tam TC; Tsai CH; Shen TJ; Simplaceanu V; Feinstein TN; Barrick D; Ho C
    Biochemistry; 2005 Sep; 44(36):12188-95. PubMed ID: 16142917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quaternary structure sensitive tyrosine residues in human hemoglobin: UV resonance raman studies of mutants at alpha140, beta35, and beta145 tyrosine.
    Nagai M; Wajcman H; Lahary A; Nakatsukasa T; Nagatomo S; Kitagawa T
    Biochemistry; 1999 Jan; 38(4):1243-51. PubMed ID: 9930984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel low oxygen affinity recombinant hemoglobin (alpha96val--> Trp): switching quaternary structure without changing the ligation state.
    Kim HW; Shen TJ; Sun DP; Ho NT; Madrid M; Ho C
    J Mol Biol; 1995 May; 248(4):867-82. PubMed ID: 7752247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Bohr effect of hemoglobin intermediates and the role of salt bridges in the tertiary/quaternary transitions.
    Russo R; Benazzi L; Perrella M
    J Biol Chem; 2001 Apr; 276(17):13628-34. PubMed ID: 11278597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV resonance raman spectra of ligand binding intermediates of sol-gel encapsulated hemoglobin.
    Juszczak LJ; Friedman JM
    J Biol Chem; 1999 Oct; 274(43):30357-60. PubMed ID: 10521410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quaternary structure sensitive tyrosine interactions in hemoglobin: a UV resonance Raman study of the double mutant rHb (beta99Asp-->Asn, alpha42Tyr-->Asp).
    Huang S; Peterson ES; Ho C; Friedman JM
    Biochemistry; 1997 May; 36(20):6197-206. PubMed ID: 9166792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.