BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12488440)

  • 1. Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase.
    Ikemoto A; Bole DG; Ueda T
    J Biol Chem; 2003 Feb; 278(8):5929-40. PubMed ID: 12488440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic vesicle-bound pyruvate kinase can support vesicular glutamate uptake.
    Ishida A; Noda Y; Ueda T
    Neurochem Res; 2009 May; 34(5):807-18. PubMed ID: 18751889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol.
    Gregus Z; Németi B
    Toxicol Sci; 2005 Jun; 85(2):859-69. PubMed ID: 15788719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuron-glia interactions in glutamatergic neurotransmission: roles of oxidative and glycolytic adenosine triphosphate as energy source.
    Schousboe A; Sickmann HM; Bak LK; Schousboe I; Jajo FS; Faek SA; Waagepetersen HS
    J Neurosci Res; 2011 Dec; 89(12):1926-34. PubMed ID: 21919035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced glutamate uptake into synaptic vesicles fueled by vesicle-generated ATP from phosphoenolpyruvate and ADP. Proposed role of a novel enzyme.
    Takeda K; Ueda T
    Neurochem Res; 2012 Dec; 37(12):2731-7. PubMed ID: 22915206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase in catecholamine-stimulated guinea-pig cardiac muscle. Comparison with mass-action ratio of creatine kinase.
    Bünger R; Mukohara N; Kang YH; Mallet RT
    Eur J Biochem; 1991 Dec; 202(3):913-21. PubMed ID: 1765102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes.
    Mercer RW; Dunham PB
    J Gen Physiol; 1981 Nov; 78(5):547-68. PubMed ID: 6273495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What controls glycolysis in bloodstream form Trypanosoma brucei?
    Bakker BM; Michels PA; Opperdoes FR; Westerhoff HV
    J Biol Chem; 1999 May; 274(21):14551-9. PubMed ID: 10329645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on the complexes between human erythrocyte enzymes participating in the conversions of 1,3-diphosphoglycerate.
    Fokina KV; Dainyak MB; Nagradova NK; Muronetz VI
    Arch Biochem Biophys; 1997 Sep; 345(2):185-92. PubMed ID: 9308888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glyceraldehyde-3-phosphate dehydrogenase is a GABAA receptor kinase linking glycolysis to neuronal inhibition.
    Laschet JJ; Minier F; Kurcewicz I; Bureau MH; Trottier S; Jeanneteau F; Griffon N; Samyn B; Van Beeumen J; Louvel J; Sokoloff P; Pumain R
    J Neurosci; 2004 Sep; 24(35):7614-22. PubMed ID: 15342727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loose interaction between glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase revealed by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy in living cells.
    Tomokuni Y; Goryo K; Katsura A; Torii S; Yasumoto K; Kemnitz K; Takada M; Fukumura H; Sogawa K
    FEBS J; 2010 Mar; 277(5):1310-8. PubMed ID: 20392205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphocreatine-dependent glutamate uptake by synaptic vesicles. A comparison with atp-dependent glutamate uptake.
    Xu CJ; Klunk WE; Kanfer JN; Xiong Q; Miller G; Pettegrew JW
    J Biol Chem; 1996 Jun; 271(23):13435-40. PubMed ID: 8662761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activation of glycolysis performed by the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in the model system.
    Arutyunov DY; Muronetz VI
    Biochem Biophys Res Commun; 2003 Jan; 300(1):149-54. PubMed ID: 12480534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis.
    Danshina PV; Schmalhausen EV; Avetisyan AV; Muronetz VI
    IUBMB Life; 2001 May; 51(5):309-14. PubMed ID: 11699877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synthesis of ATP by glycolytic enzymes in the postsynaptic density and the effect of endogenously generated nitric oxide.
    Wu K; Aoki C; Elste A; Rogalski-Wilk AA; Siekevitz P
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):13273-8. PubMed ID: 9371836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Glycolytic enzymes in human erythrocytes: association of glyceraldehyde-3-phosphate dehydrogenase with 3-phosphoglycerate kinase].
    Ashmarina LI; Muronets VI; Nagradova NK
    Biokhimiia; 1994 Jun; 59(6):873-80. PubMed ID: 8075252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GAPDH: the missing link between glycolysis and mitochondrial oxidative phosphorylation?
    Ramzan R; Weber P; Linne U; Vogt S
    Biochem Soc Trans; 2013 Oct; 41(5):1294-7. PubMed ID: 24059522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vesicular glycolysis provides on-board energy for fast axonal transport.
    Zala D; Hinckelmann MV; Yu H; Lyra da Cunha MM; Liot G; Cordelières FP; Marco S; Saudou F
    Cell; 2013 Jan; 152(3):479-91. PubMed ID: 23374344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of yeast glycolytic enzymes to chloroquine.
    Manhart A; Kalisz H; Holzer H
    Arch Microbiol; 1988; 150(3):309-12. PubMed ID: 2845878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 31P NMR magnetization-transfer measurements of flux between inorganic phosphate and adenosine 5'-triphosphate in yeast cells genetically modified to overproduce phosphoglycerate kinase.
    Brindle KM
    Biochemistry; 1988 Aug; 27(16):6187-96. PubMed ID: 3056522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.