These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 12488780)

  • 1. Physiology of sleep and wakefulness as it relates to the physiology of epilepsy.
    Amzica F
    J Clin Neurophysiol; 2002 Dec; 19(6):488-503. PubMed ID: 12488780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo electrophysiological evidences for cortical neuron-glia interactions during slow (<1 Hz) and paroxysmal sleep oscillations.
    Amzica F
    J Physiol Paris; 2002; 96(3-4):209-19. PubMed ID: 12445898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures.
    Amzica F; Neckelmann D
    J Neurophysiol; 1999 Nov; 82(5):2731-46. PubMed ID: 10561441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholinergic action on cortical glial cells in vivo.
    Seigneur J; Kroeger D; Nita DA; Amzica F
    Cereb Cortex; 2006 May; 16(5):655-68. PubMed ID: 16093563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo.
    Amzica F; Massimini M; Manfridi A
    J Neurosci; 2002 Feb; 22(3):1042-53. PubMed ID: 11826133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coalescence of sleep rhythms and their chronology in corticothalamic networks.
    Steriade M; Amzica F
    Sleep Res Online; 1998; 1(1):1-10. PubMed ID: 11382851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep oscillations developing into seizures in corticothalamic systems.
    Steriade M; Amzica F
    Epilepsia; 2003; 44 Suppl 12():9-20. PubMed ID: 14641557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns.
    Steriade M; Amzica F; Neckelmann D; Timofeev I
    J Neurophysiol; 1998 Sep; 80(3):1456-79. PubMed ID: 9744952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
    Steriade M; Contreras D; Curró Dossi R; Nuñez A
    J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations.
    Steriade M; Timofeev I
    Neuron; 2003 Feb; 37(4):563-76. PubMed ID: 12597855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression.
    Steriade M; Dossi RC; Nuñez A
    J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states.
    Destexhe A; Contreras D; Steriade M
    J Neurosci; 1999 Jun; 19(11):4595-608. PubMed ID: 10341257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Burst and tonic response modes in thalamic neurons during sleep and wakefulness.
    Weyand TG; Boudreaux M; Guido W
    J Neurophysiol; 2001 Mar; 85(3):1107-18. PubMed ID: 11247981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of changing levels of arousal on the spontaneous activity of cortical neurones: I. Sleep and wakefulness.
    Webb AC
    Proc R Soc Lond B Biol Sci; 1976 Oct; 194(1115):225-37. PubMed ID: 11487
    [No Abstract]   [Full Text] [Related]  

  • 16. Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex.
    Amzica F; Steriade M
    J Neurosci; 2000 Sep; 20(17):6648-65. PubMed ID: 10964970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex.
    Amzica F; Massimini M
    Cereb Cortex; 2002 Oct; 12(10):1101-13. PubMed ID: 12217974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes in the amount of ribosomes in cerebral cortical glia and neurons during sleep].
    Kogan AB; Fel'dman GL; Fedorenko GM; Gusatinskiĭ VN
    Dokl Akad Nauk SSSR; 1981; 259(4):1009-11. PubMed ID: 7285786
    [No Abstract]   [Full Text] [Related]  

  • 19. Electrophysiological correlates of sleep delta waves.
    Amzica F; Steriade M
    Electroencephalogr Clin Neurophysiol; 1998 Aug; 107(2):69-83. PubMed ID: 9751278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow-wave oscillations in a corticothalamic model of sleep and wake.
    Zhao X; Kim JW; Robinson PA
    J Theor Biol; 2015 Apr; 370():93-102. PubMed ID: 25659479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.