These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12489723)

  • 1. The effect of particle size reduction by grinding on subsampling variance for explosives residues in soil.
    Walsh ME; Ramsey CA; Jenkins TF
    Chemosphere; 2002 Dec; 49(10):1267-73. PubMed ID: 12489723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of particulate explosives on estimating contamination at a historical explosives testing area.
    Radtke CW; Gianotto D; Roberto FF
    Chemosphere; 2002 Jan; 46(1):3-9. PubMed ID: 11806529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution kinetics of high explosives particles in a saturated sandy soil.
    Morley MC; Yamamoto H; Speitel GE; Clausen J
    J Contam Hydrol; 2006 May; 85(3-4):141-58. PubMed ID: 16530292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the effectiveness of composting for the reduction of toxicity and mutagenicity of explosive-contaminated soil.
    Jarvis AS; McFarland VA; Honeycutt ME
    Ecotoxicol Environ Saf; 1998 Feb; 39(2):131-5. PubMed ID: 9515085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RDX and TNT residues from live-fire and blow-in-place detonations.
    Hewitt AD; Jenkins TF; Walsh ME; Walsh MR; Taylor S
    Chemosphere; 2005 Nov; 61(6):888-94. PubMed ID: 15964048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explosives detection in soil using a field-portable continuous flow immunosensor.
    Gauger PR; Holt DB; Patterson CH; Charles PT; Shriver-Lake L; Kusterbeck AW
    J Hazard Mater; 2001 May; 83(1-2):51-63. PubMed ID: 11267745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of explosives and their degradation products in soil environments.
    Halasz A; Groom C; Zhou E; Paquet L; Beaulieu C; Deschamps S; Corriveau A; Thiboutot S; Ampleman G; Dubois C; Hawari J
    J Chromatogr A; 2002 Jul; 963(1-2):411-8. PubMed ID: 12187997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of TNT from aggregate soil fractions.
    Williford CW; Mark Bricka R
    J Hazard Mater; 1999 Apr; 66(1-2):1-13. PubMed ID: 10379027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution and transport of TNT, RDX, and composition B in saturated soil columns.
    Dontsova KM; Yost SL; Simunek J; Pennington JC; Williford CW
    J Environ Qual; 2006; 35(6):2043-54. PubMed ID: 17071873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a soil extraction procedure for ecotoxicity characterization of energetic compounds.
    Sunahara GI; Dodard S; Sarrazin M; Paquet L; Ampleman G; Thiboutot S; Hawari J; Renoux AY
    Ecotoxicol Environ Saf; 1998 Mar; 39(3):185-94. PubMed ID: 9570909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA.
    Clausen J; Robb J; Curry D; Korte N
    Environ Pollut; 2004 May; 129(1):13-21. PubMed ID: 14749065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identity and distribution of residues of energetic compounds at army live-fire training ranges.
    Jenkins TF; Hewitt AD; Grant CL; Thiboutot S; Ampleman G; Walsh ME; Ranney TA; Ramsey CA; Palazzo AJ; Pennington JC
    Chemosphere; 2006 May; 63(8):1280-90. PubMed ID: 16352328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TNT and RDX degradation and extraction from contaminated soil using subcritical water.
    Islam MN; Shin MS; Jo YT; Park JH
    Chemosphere; 2015 Jan; 119():1148-1152. PubMed ID: 25460755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural and Enhanced Attenuation of Explosives on a Hand Grenade Range.
    Borden RC; Won J; Yuncu B
    J Environ Qual; 2017 Sep; 46(5):961-967. PubMed ID: 28991983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A morphological investigation of soot produced by the detonation of munitions.
    Pantea D; Brochu S; Thiboutot S; Ampleman G; Scholz G
    Chemosphere; 2006 Oct; 65(5):821-31. PubMed ID: 16674994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-aerosol detection of explosives with a continuous flow immunosensor.
    Shriver-Lake LC; Charles PT; Kusterbeck AW
    Anal Bioanal Chem; 2003 Oct; 377(3):550-5. PubMed ID: 12920500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil properties affect the toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the enchytraeid worm Enchytraeus crypticus.
    Kuperman RG; Checkai RT; Simini M; Phillips CT; Kolakowski JE; Lanno R
    Environ Toxicol Chem; 2013 Nov; 32(11):2648-59. PubMed ID: 23955807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contamination characteristics of energetic compounds in soils of two different types of military demolition range in China.
    Zhang H; Zhu Y; Wang S; Zhao S; Nie Y; Liao X; Cao H; Yin H; Liu X
    Environ Pollut; 2022 Feb; 295():118654. PubMed ID: 34890741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana.
    Clark B; Boopathy R
    J Hazard Mater; 2007 May; 143(3):643-8. PubMed ID: 17289260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.