These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Laboratory Column Evaluation of High Explosives Attenuation in Grenade Range Soils. Won J; Borden RC J Environ Qual; 2017 Sep; 46(5):968-974. PubMed ID: 28991974 [TBL] [Abstract][Full Text] [Related]
23. Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms. Robidoux PY; Svendsen C; Sarrazin M; Thiboutot S; Ampleman G; Hawari J; Weeks JM; Sunahara GI Arch Environ Contam Toxicol; 2005 Jan; 48(1):56-67. PubMed ID: 15657806 [TBL] [Abstract][Full Text] [Related]
24. In-line coupling capillary electrochromatography with amperometric detection for analysis of explosive compounds. Hilmi A; Luong JH Electrophoresis; 2000 Apr; 21(7):1395-404. PubMed ID: 10826686 [TBL] [Abstract][Full Text] [Related]
25. Trace explosive detection in aqueous samples by solid-phase extraction ion mobility spectrometry (SPE-IMS). Buxton TL; Harrington Pde B Appl Spectrosc; 2003 Feb; 57(2):223-32. PubMed ID: 14610961 [TBL] [Abstract][Full Text] [Related]
26. TNT particle size distributions from detonated 155-mm howitzer rounds. Taylor S; Hewitt A; Lever J; Hayes C; Perovich L; Thorne P; Daghlian C Chemosphere; 2004 Apr; 55(3):357-67. PubMed ID: 14987934 [TBL] [Abstract][Full Text] [Related]
27. Micro-solid-phase extraction coupled to desorption electrospray ionization-high-resolution mass spectrometry for the analysis of explosives in soil. Bianchi F; Gregori A; Braun G; Crescenzi C; Careri M Anal Bioanal Chem; 2015 Jan; 407(3):931-8. PubMed ID: 25277104 [TBL] [Abstract][Full Text] [Related]
28. Vapor-phase transport of explosives from buried sources in soils. Ravikrishna R; Valsaraj KT; Price CB; Brannon JM; Hayes CA; Yost SL J Air Waste Manag Assoc; 2004 Dec; 54(12):1525-33. PubMed ID: 15648390 [TBL] [Abstract][Full Text] [Related]
29. Mutagenicity of trinitrotoluene and its metabolites formed during composting. Tan EL; Ho CH; Griest WH; Tyndall RL J Toxicol Environ Health; 1992 Jul; 36(3):165-75. PubMed ID: 1629932 [TBL] [Abstract][Full Text] [Related]
30. Detection of 2,4,6-trinitrotoluene in environmental samples using a homogeneous fluoroimmunoassay. Goldman ER; Cohill TJ; Patterson CH; Anderson GP; Kusterbeck AW; Mauro JM Environ Sci Technol; 2003 Oct; 37(20):4733-6. PubMed ID: 14594385 [TBL] [Abstract][Full Text] [Related]
31. Behavior of energetic materials in ground water at an anti-tank range. Martel R; Mailloux M; Gabriel U; Lefebvre R; Thiboutot S; Ampleman G J Environ Qual; 2009; 38(1):75-92. PubMed ID: 19141797 [TBL] [Abstract][Full Text] [Related]
32. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces. Jaramillo AM; Douglas TA; Walsh ME; Trainor TP Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233 [TBL] [Abstract][Full Text] [Related]
33. Outdoor weathering and dissolution of TNT and Tritonal. Taylor S; Lever JH; Fadden J; Perron N; Packer B Chemosphere; 2009 Nov; 77(10):1338-45. PubMed ID: 19846196 [TBL] [Abstract][Full Text] [Related]
34. A Conceptual Model of Fate and Transport Processes for RDX Deposited to Surface Soils of North American Active Demolition Sites. Lapointe MC; Martel R; Diaz E J Environ Qual; 2017 Nov; 46(6):1444-1454. PubMed ID: 29293864 [TBL] [Abstract][Full Text] [Related]
35. Optimization of Field and Laboratory Sample Processing for Characterization of Metallic Residues at Military Training Ranges. Clausen JL; Georgian T; Gardner KH; Douglas TA Bull Environ Contam Toxicol; 2018 May; 100(5):603-608. PubMed ID: 29532132 [TBL] [Abstract][Full Text] [Related]
36. Comment on "Optimized microwave extraction for trace detection of 2,4,6-trinitrotoluene in soil samples" [Chemosphere 71(9) (2008) 1701-1708]. Beyene NW Chemosphere; 2008 Nov; 73(9):1570-2; discussion 1573. PubMed ID: 18834615 [No Abstract] [Full Text] [Related]
37. Evaluating the bioavailability of explosive metabolites, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), in soils using passive sampling devices. Zhang B; Smith PN; Anderson TA J Chromatogr A; 2006 Jan; 1101(1-2):38-45. PubMed ID: 16246354 [TBL] [Abstract][Full Text] [Related]
38. Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining. Ruiz-Chancho MJ; López-Sánchez JF; Rubio R Anal Bioanal Chem; 2007 Jan; 387(2):627-35. PubMed ID: 17171341 [TBL] [Abstract][Full Text] [Related]
39. Reduction and persulfate oxidation of nitro explosives in contaminated soils using Fe-bearing materials. Oh SY; Yoon HS; Jeong TY; Kim SD; Kim DW Environ Sci Process Impacts; 2016 Jul; 18(7):863-71. PubMed ID: 27327861 [TBL] [Abstract][Full Text] [Related]
40. Environmental impacts of training activities at an air weapons range. Bordeleau G; Martel R; Ampleman G; Thiboutot S J Environ Qual; 2008; 37(2):308-17. PubMed ID: 18268292 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]