These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12489764)

  • 1. Laminar bone as an adaptation to torsional loads in flapping flight.
    de Margerie E
    J Anat; 2002 Dec; 201(6):521-6. PubMed ID: 12489764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations.
    Simons EL; O'connor PM
    Anat Rec (Hoboken); 2012 Mar; 295(3):386-96. PubMed ID: 22241723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural features of cross-sectional wing bones in the griffon vulture (Gyps fulvus) as a prediction of flight style.
    Frongia GN; Muzzeddu M; Mereu P; Leoni G; Berlinguer F; Zedda M; Farina V; Satta V; Di Stefano M; Naitana S
    J Morphol; 2018 Dec; 279(12):1753-1763. PubMed ID: 30397929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen fiber orientation pattern, osteon morphology and distribution, and presence of laminar histology do not distinguish torsion from bending in bat and pigeon wing bones.
    Skedros JG; Doutré MS
    J Anat; 2019 Jun; 234(6):748-763. PubMed ID: 30924933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone histological correlates of soaring and high-frequency flapping flight in the furculae of birds.
    Mitchell J; Legendre LJ; Lefèvre C; Cubo J
    Zoology (Jena); 2017 Jun; 122():90-99. PubMed ID: 28495051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between wing bone microstructure and different flight styles: The case of the griffon vulture (gyps fulvus) and greater flamingo (phoenicopterus roseus).
    Frongia GN; Naitana S; Farina V; Gadau SD; Stefano MD; Muzzeddu M; Leoni G; Zedda M
    J Anat; 2021 Jul; 239(1):59-69. PubMed ID: 33650143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Torsional resistance as a principal component of the structural design of long bones: comparative multivariate evidence in birds.
    de Margerie E; Sanchez S; Cubo J; Castanet J
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Jan; 282(1):49-66. PubMed ID: 15584036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogeny of aerodynamics in mallards: comparative performance and developmental implications.
    Dial TR; Heers AM; Tobalske BW
    J Exp Biol; 2012 Nov; 215(Pt 21):3693-702. PubMed ID: 22855612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross sectional geometry of the forelimb skeleton and flight mode in pelecaniform birds.
    Simons EL; Hieronymus TL; O'Connor PM
    J Morphol; 2011 Aug; 272(8):958-71. PubMed ID: 21567447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wing flexibility improves bumblebee flight stability.
    Mistick EA; Mountcastle AM; Combes SA
    J Exp Biol; 2016 Nov; 219(Pt 21):3384-3390. PubMed ID: 27638618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and cross-sectional shape of limb bones in Great Horned Owls and Red-tailed Hawks: how do these features relate to differences in flight and hunting behavior?
    Marelli CA; Simons EL
    PLoS One; 2014; 9(8):e106094. PubMed ID: 25162595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precocial hindlimbs and altricial forelimbs: partitioning ontogenetic strategies in mallards (Anas platyrhynchos).
    Dial TR; Carrier DR
    J Exp Biol; 2012 Nov; 215(Pt 21):3703-10. PubMed ID: 22855613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.
    KleinHeerenbrink M; Johansson LC; Hedenström A
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.
    Hinson BT; Morgansen KA
    Bioinspir Biomim; 2015 Oct; 10(5):056013. PubMed ID: 26440705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD; Lentink D
    J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.
    Slegers N; Heilman M; Cranford J; Lang A; Yoder J; Habegger ML
    Bioinspir Biomim; 2017 Jan; 12(1):016013. PubMed ID: 28000615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
    Eberle AL; Dickerson BH; Reinhall PG; Daniel TL
    J R Soc Interface; 2015 Mar; 12(104):20141088. PubMed ID: 25631565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.
    Heers AM; Baier DB; Jackson BE; Dial KP
    PLoS One; 2016; 11(4):e0153446. PubMed ID: 27100994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.