BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 12489775)

  • 1. Lignin degrading system of white-rot fungi and its exploitation for dye decolorization.
    Shah V; Nerud F
    Can J Microbiol; 2002 Oct; 48(10):857-70. PubMed ID: 12489775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation.
    Ander P; Marzullo L
    J Biotechnol; 1997 Mar; 53(2-3):115-31. PubMed ID: 9177041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Industrial dye decolorization by laccases from ligninolytic fungi.
    Rodríguez E; Pickard MA; Vazquez-Duhalt R
    Curr Microbiol; 1999 Jan; 38(1):27-32. PubMed ID: 9841778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi.
    Martani F; Beltrametti F; Porro D; Branduardi P; Lotti M
    FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28655193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization.
    Rekik H; Zaraî Jaouadi N; Bouacem K; Zenati B; Kourdali S; Badis A; Annane R; Bouanane-Darenfed A; Bejar S; Jaouadi B
    Int J Biol Macromol; 2019 Mar; 125():514-525. PubMed ID: 30528991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review.
    Kumar V; Pallavi P; Sen SK; Raut S
    Water Environ Res; 2024 Jan; 96(1):e10959. PubMed ID: 38204323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical features of dye-decolorizing peroxidases: Current impact on lignin degradation.
    Catucci G; Valetti F; Sadeghi SJ; Gilardi G
    Biotechnol Appl Biochem; 2020 Sep; 67(5):751-759. PubMed ID: 32860433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligninolytic enzymes of the white-rot fungus Phlebia radiata.
    Niku-Paavola ML; Karhunen E; Salola P; Raunio V
    Biochem J; 1988 Sep; 254(3):877-83. PubMed ID: 3196301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grape stalks as substrate for white rot fungi, lignocellulolytic enzyme production and dye decolorization.
    Levin L; Diorio L; Grassi E; Forchiassin F
    Rev Argent Microbiol; 2012; 44(2):105-12. PubMed ID: 22997770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes.
    Levin L; Papinutti L; Forchiassin F
    Bioresour Technol; 2004 Sep; 94(2):169-76. PubMed ID: 15158509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of some extracellular enzymes by a lignin peroxidase-producing brown rot fungus, Polyporus ostreiformis, and its comparative abilities for lignin degradation and dye decolorization.
    Dey S; Maiti TK; Bhattacharyya BC
    Appl Environ Microbiol; 1994 Nov; 60(11):4216-8. PubMed ID: 7527628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi.
    Raghukumar C; D'Souza-Ticlo D; Verma AK
    Crit Rev Microbiol; 2008; 34(3-4):189-206. PubMed ID: 19003603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi.
    Orth AB; Royse DJ; Tien M
    Appl Environ Microbiol; 1993 Dec; 59(12):4017-23. PubMed ID: 8285705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium.
    Cripps C; Bumpus JA; Aust SD
    Appl Environ Microbiol; 1990 Apr; 56(4):1114-8. PubMed ID: 2339873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial lignin peroxidases: Applications, production challenges and future perspectives.
    Biko ODV; Viljoen-Bloom M; van Zyl WH
    Enzyme Microb Technol; 2020 Nov; 141():109669. PubMed ID: 33051019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detoxification of azo dyes mediated by cell-free supernatant culture with manganese-dependent peroxidase activity: effect of Mn2+ concentration and H2O2 dose.
    Contreras E; Urra J; Vásquez C; Palma C
    Biotechnol Prog; 2012; 28(1):114-20. PubMed ID: 22002943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Enzymes of white rot fungi involved in lignin degradation].
    Papinutti VL; Forchiassin F
    Rev Argent Microbiol; 2000; 32(2):83-8. PubMed ID: 10885008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin.
    Martínez AT; Speranza M; Ruiz-Dueñas FJ; Ferreira P; Camarero S; Guillén F; Martínez MJ; Gutiérrez A; del Río JC
    Int Microbiol; 2005 Sep; 8(3):195-204. PubMed ID: 16200498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions.
    Arantes V; Milagres AM; Filley TR; Goodell B
    J Ind Microbiol Biotechnol; 2011 Apr; 38(4):541-55. PubMed ID: 20711629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.