These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 124899)
61. Influence of the ethanol and glucose supply rate on the rate and enantioselectivity of 3-oxo ester reduction by baker's yeast. Chin-Joe I; Straathof AJ; Pronk JT; Jongejan JA; Heijnen JJ Biotechnol Bioeng; 2001 Oct; 75(1):29-38. PubMed ID: 11536124 [TBL] [Abstract][Full Text] [Related]
62. Mutations in phosphofructokinases alter the control characteristics of glycolysis in vivo in Saccharomyces cerevisiae. Lloyd D; James CJ; Maitra PK Yeast; 1992 Apr; 8(4):291-301. PubMed ID: 1387501 [TBL] [Abstract][Full Text] [Related]
63. New Saccharomyces cerevisiae baker's yeast displaying enhanced resistance to freezing. Codón AC; Rincón AM; Moreno-Mateos MA; Delgado-Jarana J; Rey M; Limón C; Rosado IV; Cubero B; Peñate X; Castrejón F; Benítez T J Agric Food Chem; 2003 Jan; 51(2):483-91. PubMed ID: 12517114 [TBL] [Abstract][Full Text] [Related]
64. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains. Lin X; Yu AQ; Zhang CY; Pi L; Bai XW; Xiao DG Microb Cell Fact; 2017 Nov; 16(1):194. PubMed ID: 29121937 [TBL] [Abstract][Full Text] [Related]
65. Theanine production by coupled fermentation with energy transfer employing Pseudomonas taetrolens Y-30 glutamine synthetase and baker's yeast cells. Yamamoto S; Wakayama M; Tachiki T Biosci Biotechnol Biochem; 2005 Apr; 69(4):784-9. PubMed ID: 15849418 [TBL] [Abstract][Full Text] [Related]
66. Intracellular ATP in a glucosephosphate isomerase mutant of Saccharomyces cerevisiae. Ugarova NN; Romay C; Garcia I; Pascual C Folia Microbiol (Praha); 1986; 31(2):113-9. PubMed ID: 3519387 [TBL] [Abstract][Full Text] [Related]
67. Glutamine synthesis is a regulatory signal controlling glucose catabolism in Saccharomyces cerevisiae. Flores-Samaniego B; Olivera H; González A J Bacteriol; 1993 Dec; 175(23):7705-6. PubMed ID: 7902349 [TBL] [Abstract][Full Text] [Related]
68. Carbon and energy balances of glucose fermentation with hydrogenproducing bacterium Citrobacter amalonaticus Y19. Oh YK; Park S; Seol EH; Kim SH; Kim MS; Hwang JW; Ryu DD J Microbiol Biotechnol; 2008 Mar; 18(3):532-8. PubMed ID: 18388473 [TBL] [Abstract][Full Text] [Related]
69. A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae. Xu Z; Tsurugi K FEBS J; 2006 Apr; 273(8):1696-709. PubMed ID: 16623706 [TBL] [Abstract][Full Text] [Related]
70. [Ethyl alcohol production and growth of baker's yeast cultured under aerobic conditions]. LEMOIGNE M; AUBERT JP; MILLET J Ann Inst Pasteur (Paris); 1954 Oct; 87(4):427-39. PubMed ID: 13218380 [No Abstract] [Full Text] [Related]
71. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Palmqvist E; Almeida JS; Hahn-Hägerdal B Biotechnol Bioeng; 1999 Feb; 62(4):447-54. PubMed ID: 9921153 [TBL] [Abstract][Full Text] [Related]
72. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Piper PW; Ortiz-Calderon C; Holyoak C; Coote P; Cole M Cell Stress Chaperones; 1997 Mar; 2(1):12-24. PubMed ID: 9250391 [TBL] [Abstract][Full Text] [Related]
73. The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis. Palmfeldt J; Paese M; Hahn-Hägerdal B; Van Niel EW Appl Environ Microbiol; 2004 Sep; 70(9):5477-84. PubMed ID: 15345435 [TBL] [Abstract][Full Text] [Related]
74. Effect of inhibitors on acid production by baker's yeast. Sigler K; Knotková A; Kotyk A Folia Microbiol (Praha); 1978; 23(6):409-22. PubMed ID: 105974 [TBL] [Abstract][Full Text] [Related]
75. Development of a novel microbial sensor with baker's yeast cells for monitoring temperature control during cold food chain. Kogure H; Kawasaki S; Nakajima K; Sakai N; Futase K; Inatsu Y; Bari ML; Isshiki K; Kawamoto S J Food Prot; 2005 Jan; 68(1):182-6. PubMed ID: 15690824 [TBL] [Abstract][Full Text] [Related]
76. Including glutamine in a resource allocation model of energy metabolism in cancer and yeast cells. Ewald J; He Z; Dimitriew W; Schuster S NPJ Syst Biol Appl; 2024 Jul; 10(1):77. PubMed ID: 39025861 [TBL] [Abstract][Full Text] [Related]
77. Killer toxin for sake yeast: properties and effects of adenosine 5'-diphosphate and calcium ion on killing action. Kotani H; Shinmyo A; Enatsu T J Bacteriol; 1977 Feb; 129(2):640-50. PubMed ID: 14107 [TBL] [Abstract][Full Text] [Related]
78. Loss of fermentative capacity in baker's yeast can partly be explained by reduced glucose uptake capacity. Rossell S; van der Weijden CC; Kruckeberg A; Bakker BM; Westerhoff HV Mol Biol Rep; 2002; 29(1-2):255-7. PubMed ID: 12241067 [TBL] [Abstract][Full Text] [Related]
79. A predictive dynamic yeast model based on component, energy, and electron carrier balances. La A; Du H; Taidi B; Perré P Biotechnol Bioeng; 2020 Sep; 117(9):2728-2740. PubMed ID: 32458414 [TBL] [Abstract][Full Text] [Related]
80. Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Millard PJ; Roth BL; Thi HP; Yue ST; Haugland RP Appl Environ Microbiol; 1997 Jul; 63(7):2897-905. PubMed ID: 9212436 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]