These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 124899)
81. The effect of sodium azide on alcoholic fermentation. FALES FW J Biol Chem; 1953 May; 202(1):157-67. PubMed ID: 13061441 [No Abstract] [Full Text] [Related]
82. RELEASE OF NITROGENOUS SUBSTANCES BY BREWER'S YEAST. IV. ENERGETICS IN SHOCK EXCRETION OF AMINO ACIDS. LEWIS MJ; PHAFF HJ J Bacteriol; 1965 Apr; 89(4):960-6. PubMed ID: 14276122 [TBL] [Abstract][Full Text] [Related]
83. Sorbose counterflow as a measure of intracellular glucose in baker's yeast. Wilkins PO; Cirillo VP J Bacteriol; 1965 Dec; 90(6):1605-10. PubMed ID: 5854586 [TBL] [Abstract][Full Text] [Related]
84. Energy conservation in chemotrophic anaerobic bacteria. Thauer RK; Jungermann K; Decker K Bacteriol Rev; 1977 Mar; 41(1):100-80. PubMed ID: 860983 [No Abstract] [Full Text] [Related]
85. Microcalorimetric investigations on human leukemia cells--Molt 4. Nittinger J; Tejmar-Kolar L; Fürst P Biol Cell; 1990; 70(3):139-42. PubMed ID: 2103521 [TBL] [Abstract][Full Text] [Related]
86. [Effect of acetaldehyde upon the oxidative degradation of glucose by baker's yeast]. Iscaki M; Thomas MJ C R Acad Hebd Seances Acad Sci D; 1975 Jan; 280(3):315-7. PubMed ID: 808334 [TBL] [Abstract][Full Text] [Related]
87. Tracking Yeast Metabolism and the Crabtree Effect in Real Time via CO Ahmed MR; Doyle N; Connolly C; McSweeney S; Krüse J; Morrissey J; Prentice MB; Fitzpatrick D J Biotechnol; 2020 Jan; 308():63-73. PubMed ID: 31794782 [TBL] [Abstract][Full Text] [Related]
88. Energetics of Microbacterium thermosphactum in glucose-limited continuous culture. Hitchener BJ; Egan AF; Rogers PJ Appl Environ Microbiol; 1979 Jun; 37(6):1047-52. PubMed ID: 114113 [TBL] [Abstract][Full Text] [Related]
89. The effects of salicylic acid on metabolism and potassium ion content in yeast. Scharff TG; Perry AC Proc Soc Exp Biol Med; 1976 Jan; 151(1):72-7. PubMed ID: 2932 [TBL] [Abstract][Full Text] [Related]
90. Energy changes during ensilage. McDonald P; Henderson AR; Ralton I J Sci Food Agric; 1973 Jul; 24(7):827-34. PubMed ID: 4581436 [No Abstract] [Full Text] [Related]
91. Revisiting the Crabtree/Warburg effect in a dynamic perspective: a fitness advantage against sugar-induced cell death. de Alteriis E; Cartenì F; Parascandola P; Serpa J; Mazzoleni S Cell Cycle; 2018; 17(6):688-701. PubMed ID: 29509056 [TBL] [Abstract][Full Text] [Related]
92. [Microcalorimetric studies on yeast metabolism. II. Growth on solid culture media]. Lamprecht I; Meggers C Biophysik; 1972; 8(4):316-25. PubMed ID: 4565133 [No Abstract] [Full Text] [Related]
94. Development of two devices for high-throughput screening of ethanol-producing microorganisms by real-time CO Gord Noshahri N; Sharifi A; Seyedabadi M; Rudat J; Zare Mehrjerdi M Bioprocess Biosyst Eng; 2023 Aug; 46(8):1209-1220. PubMed ID: 37338580 [TBL] [Abstract][Full Text] [Related]
95. Pilot plant glycerol production with a slow-feed osmophilic yeast fermentation. Button DK; Garver JC; Hajny GJ Appl Microbiol; 1966 Mar; 14(2):292-4. PubMed ID: 6006420 [TBL] [Abstract][Full Text] [Related]
96. Dependence of phosphate transport in yeast of glycolytic substrates. Knotková A; Kotyk A Folia Microbiol (Praha); 1981; 26(5):377-81. PubMed ID: 7033082 [TBL] [Abstract][Full Text] [Related]
97. Direct calorimetry in ecological energetics. Long term monitoring of aquatic animals. Gnaiger E Experientia Suppl; 1979; 37():155-65. PubMed ID: 296722 [TBL] [Abstract][Full Text] [Related]
98. Anaerobic metabolism in the leech (Hirudo medicinalis L.): direct and indirect calorimetry during severe hypoxia. Schmidt H; Wichmann A; Lamprecht I; Zerbst-Boroffka I J Comp Physiol B; 1996; 166(3):205-14. PubMed ID: 8765666 [TBL] [Abstract][Full Text] [Related]
99. Towards a microbial thermoelectric cell. Rodríguez-Barreiro R; Abendroth C; Vilanova C; Moya A; Porcar M PLoS One; 2013; 8(2):e56358. PubMed ID: 23468862 [TBL] [Abstract][Full Text] [Related]
100. Revisiting the thermodynamic theory of optimal ATP stoichiometries by analysis of various ATP-producing metabolic pathways. Werner S; Diekert G; Schuster S J Mol Evol; 2010 Dec; 71(5-6):346-55. PubMed ID: 20922363 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]