These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 12490154)

  • 21. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci.
    Bozhenok L; Wade PA; Varga-Weisz P
    EMBO J; 2002 May; 21(9):2231-41. PubMed ID: 11980720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density.
    Lieleg C; Ketterer P; Nuebler J; Ludwigsen J; Gerland U; Dietz H; Mueller-Planitz F; Korber P
    Mol Cell Biol; 2015 May; 35(9):1588-605. PubMed ID: 25733687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II.
    Varga-Weisz PD; Wilm M; Bonte E; Dumas K; Mann M; Becker PB
    Nature; 1997 Aug; 388(6642):598-602. PubMed ID: 9252192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-specific acetylation of ISWI by GCN5.
    Ferreira R; Eberharter A; Bonaldi T; Chioda M; Imhof A; Becker PB
    BMC Mol Biol; 2007 Aug; 8():73. PubMed ID: 17760996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer.
    Längst G; Bonte EJ; Corona DF; Becker PB
    Cell; 1999 Jun; 97(7):843-52. PubMed ID: 10399913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor.
    Ito T; Bulger M; Pazin MJ; Kobayashi R; Kadonaga JT
    Cell; 1997 Jul; 90(1):145-55. PubMed ID: 9230310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme.
    Whitehouse I; Stockdale C; Flaus A; Szczelkun MD; Owen-Hughes T
    Mol Cell Biol; 2003 Mar; 23(6):1935-45. PubMed ID: 12612068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The c-myc DNA-unwinding element-binding protein modulates the assembly of DNA replication complexes in vitro.
    Casper JM; Kemp MG; Ghosh M; Randall GM; Vaillant A; Leffak M
    J Biol Chem; 2005 Apr; 280(13):13071-83. PubMed ID: 15653697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two histone fold proteins, CHRAC-14 and CHRAC-16, are developmentally regulated subunits of chromatin accessibility complex (CHRAC).
    Corona DF; Eberharter A; Budde A; Deuring R; Ferrari S; Varga-Weisz P; Wilm M; Tamkun J; Becker PB
    EMBO J; 2000 Jun; 19(12):3049-59. PubMed ID: 10856248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo.
    Corona DF; Siriaco G; Armstrong JA; Snarskaya N; McClymont SA; Scott MP; Tamkun JW
    PLoS Biol; 2007 Sep; 5(9):e232. PubMed ID: 17760505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mobilization of hyperacetylated mononucleosomes by purified yeast ISW2 in vitro.
    Krajewski WA
    Arch Biochem Biophys; 2016 Feb; 591():1-6. PubMed ID: 26692330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The nucleosome remodeling factor ISWI functionally interacts with an evolutionarily conserved network of cellular factors.
    Arancio W; Onorati MC; Burgio G; Collesano M; Ingrassia AM; Genovese SI; Fanto M; Corona DF
    Genetics; 2010 May; 185(1):129-40. PubMed ID: 20194965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling.
    Eberharter A; Ferrari S; Längst G; Straub T; Imhof A; Varga-Weisz P; Wilm M; Becker PB
    EMBO J; 2001 Jul; 20(14):3781-8. PubMed ID: 11447119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sperm chromatin decondensation by template activating factor I through direct interaction with basic proteins.
    Matsumoto K; Nagata K; Miyaji-Yamaguchi M; Kikuchi A; Tsujimoto M
    Mol Cell Biol; 1999 Oct; 19(10):6940-52. PubMed ID: 10490631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism.
    Fazzio TG; Tsukiyama T
    Mol Cell; 2003 Nov; 12(5):1333-40. PubMed ID: 14636590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD-histone contacts.
    Eberharter A; Vetter I; Ferreira R; Becker PB
    EMBO J; 2004 Oct; 23(20):4029-39. PubMed ID: 15457208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SWItched-on mobility.
    Guschin D; Wolffe AP
    Curr Biol; 1999 Oct; 9(19):R742-6. PubMed ID: 10530996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SLIDE, the protein interacting domain of Imitation Switch remodelers, binds DDT-domain proteins of different subfamilies in chromatin remodeling complexes.
    Dong J; Gao Z; Liu S; Li G; Yang Z; Huang H; Xu L
    J Integr Plant Biol; 2013 Oct; 55(10):928-37. PubMed ID: 23691993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A family of chromatin remodeling factors related to Williams syndrome transcription factor.
    Bochar DA; Savard J; Wang W; Lafleur DW; Moore P; Côté J; Shiekhattar R
    Proc Natl Acad Sci U S A; 2000 Feb; 97(3):1038-43. PubMed ID: 10655480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NO66, a highly conserved dual location protein in the nucleolus and in a special type of synchronously replicating chromatin.
    Eilbracht J; Reichenzeller M; Hergt M; Schnölzer M; Heid H; Stöhr M; Franke WW; Schmidt-Zachmann MS
    Mol Biol Cell; 2004 Apr; 15(4):1816-32. PubMed ID: 14742713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.