These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12490440)

  • 1. Computational antisense oligo prediction with a neural network model.
    Chalk AM; Sonnhammer EL
    Bioinformatics; 2002 Dec; 18(12):1567-75. PubMed ID: 12490440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ten years of antisense inhibition of brain G-protein-coupled receptor function.
    Van Oekelen D; Luyten WH; Leysen JE
    Brain Res Brain Res Rev; 2003 May; 42(2):123-42. PubMed ID: 12738054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of antisense oligonucleotides based on multiple predicted target mRNA structures.
    Bo X; Lou S; Sun D; Shu W; Yang J; Wang S
    BMC Bioinformatics; 2006 Mar; 7():122. PubMed ID: 16526963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural network prediction of antisense oligodeoxynucleotide activity.
    Giddings MC; Shah AA; Freier S; Atkins JF; Gesteland RF; Matveeva OV
    Nucleic Acids Res; 2002 Oct; 30(19):4295-304. PubMed ID: 12364609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of siRNA knockdown efficiency using artificial neural network models.
    Ge G; Wong GW; Luo B
    Biochem Biophys Res Commun; 2005 Oct; 336(2):723-8. PubMed ID: 16153609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing.
    Takeshima Y; Yagi M; Matsuo M
    Methods Mol Biol; 2012; 867():131-41. PubMed ID: 22454059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming.
    Saetrom P
    Bioinformatics; 2004 Nov; 20(17):3055-63. PubMed ID: 15201190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiled support vector machines for antisense oligonucleotide efficacy prediction.
    Camps-Valls G; Chalk AM; Serrano-López AJ; Martín-Guerrero JD; Sonnhammer EL
    BMC Bioinformatics; 2004 Sep; 5():135. PubMed ID: 15383156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TargetFinder: a software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA.
    Bo X; Wang S
    Bioinformatics; 2005 Apr; 21(8):1401-2. PubMed ID: 15598838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of mRNA self-structure on hybridization: computational tools for antisense sequence selection.
    Toschi N
    Methods; 2000 Nov; 22(3):261-9. PubMed ID: 11071822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of translation initiation sites in human mRNA sequences with AUG start codon in weak Kozak context: A neural network approach.
    Tikole S; Sankararamakrishnan R
    Biochem Biophys Res Commun; 2008 May; 369(4):1166-8. PubMed ID: 18342624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational models with thermodynamic and composition features improve siRNA design.
    Shabalina SA; Spiridonov AN; Ogurtsov AY
    BMC Bioinformatics; 2006 Feb; 7():65. PubMed ID: 16472402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RFRCDB-siRNA: improved design of siRNAs by random forest regression model coupled with database searching.
    Jiang P; Wu H; Da Y; Sang F; Wei J; Sun X; Lu Z
    Comput Methods Programs Biomed; 2007 Sep; 87(3):230-8. PubMed ID: 17644215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotif: from graphical motif description to RNA motif search.
    Reeder J; Reeder J; Giegerich R
    Bioinformatics; 2007 Jul; 23(13):i392-400. PubMed ID: 17646322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RAG: RNA-As-Graphs database--concepts, analysis, and features.
    Gan HH; Fera D; Zorn J; Shiffeldrim N; Tang M; Laserson U; Kim N; Schlick T
    Bioinformatics; 2004 May; 20(8):1285-91. PubMed ID: 14962931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Widespread occurrence of antisense transcription in the human genome.
    Yelin R; Dahary D; Sorek R; Levanon EY; Goldstein O; Shoshan A; Diber A; Biton S; Tamir Y; Khosravi R; Nemzer S; Pinner E; Walach S; Bernstein J; Savitsky K; Rotman G
    Nat Biotechnol; 2003 Apr; 21(4):379-86. PubMed ID: 12640466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AOBase: a database for antisense oligonucleotides selection and design.
    Bo X; Lou S; Sun D; Yang J; Wang S
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D664-7. PubMed ID: 16381954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of sequence motifs significantly associated with antisense activity.
    McQuisten KA; Peek AS
    BMC Bioinformatics; 2007 Jun; 8():184. PubMed ID: 17555590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions.
    Creighton CJ; Nagaraja AK; Hanash SM; Matzuk MM; Gunaratne PH
    RNA; 2008 Nov; 14(11):2290-6. PubMed ID: 18812437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.