BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 12490557)

  • 1. Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells.
    Tallquist MD; Soriano P
    Development; 2003 Feb; 130(3):507-18. PubMed ID: 12490557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperation between the PDGF receptors in cardiac neural crest cell migration.
    Richarte AM; Mead HB; Tallquist MD
    Dev Biol; 2007 Jun; 306(2):785-96. PubMed ID: 17499702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells.
    Kaartinen V; Dudas M; Nagy A; Sridurongrit S; Lu MM; Epstein JA
    Development; 2004 Jul; 131(14):3481-90. PubMed ID: 15226263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sox10ER(T2) CreER(T2) mice enable tracing of distinct neural crest cell populations.
    He F; Soriano P
    Dev Dyn; 2015 Nov; 244(11):1394-403. PubMed ID: 26250625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of Cdc42 in neural crest cells causes craniofacial and cardiovascular morphogenesis defects.
    Liu Y; Jin Y; Li J; Seto E; Kuo E; Yu W; Schwartz RJ; Blazo M; Zhang SL; Peng X
    Dev Biol; 2013 Nov; 383(2):239-52. PubMed ID: 24056078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A human YAC transgene rescues craniofacial and neural tube development in PDGFRalpha knockout mice and uncovers a role for PDGFRalpha in prenatal lung growth.
    Sun T; Jayatilake D; Afink GB; Ataliotis P; Nistér M; Richardson WD; Smith HK
    Development; 2000 Nov; 127(21):4519-29. PubMed ID: 11023856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of microRNAs in neural crest leads to cardiovascular syndromes resembling human congenital heart defects.
    Huang ZP; Chen JF; Regan JN; Maguire CT; Tang RH; Dong XR; Majesky MW; Wang DZ
    Arterioscler Thromb Vasc Biol; 2010 Dec; 30(12):2575-86. PubMed ID: 20884876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mTOR acts as a pivotal signaling hub for neural crest cells during craniofacial development.
    Nie X; Zheng J; Ricupero CL; He L; Jiao K; Mao JJ
    PLoS Genet; 2018 Jul; 14(7):e1007491. PubMed ID: 29975682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eif3ba regulates cranial neural crest development by modulating p53 in zebrafish.
    Xia Z; Tong X; Liang F; Zhang Y; Kuok C; Zhang Y; Liu X; Zhu Z; Lin S; Zhang B
    Dev Biol; 2013 Sep; 381(1):83-96. PubMed ID: 23791820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse.
    Abu-Issa R; Smyth G; Smoak I; Yamamura K; Meyers EN
    Development; 2002 Oct; 129(19):4613-25. PubMed ID: 12223417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate of cranial neural crest cells during craniofacial development in endothelin-A receptor-deficient mice.
    Abe M; Ruest LB; Clouthier DE
    Int J Dev Biol; 2007; 51(2):97-105. PubMed ID: 17294360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone deacetylase 3 regulates smooth muscle differentiation in neural crest cells and development of the cardiac outflow tract.
    Singh N; Trivedi CM; Lu M; Mullican SE; Lazar MA; Epstein JA
    Circ Res; 2011 Nov; 109(11):1240-9. PubMed ID: 21959220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating timing and function of endothelin-A receptor signaling during craniofacial development using neural crest cell-specific gene deletion and receptor antagonism.
    Ruest LB; Clouthier DE
    Dev Biol; 2009 Apr; 328(1):94-108. PubMed ID: 19185569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined deficiencies of Msx1 and Msx2 cause impaired patterning and survival of the cranial neural crest.
    Ishii M; Han J; Yen HY; Sucov HM; Chai Y; Maxson RE
    Development; 2005 Nov; 132(22):4937-50. PubMed ID: 16221730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PDGFR-alpha signaling is critical for tooth cusp and palate morphogenesis.
    Xu X; Bringas P; Soriano P; Chai Y
    Dev Dyn; 2005 Jan; 232(1):75-84. PubMed ID: 15543606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDGF function in diverse neural crest cell populations.
    Smith CL; Tallquist MD
    Cell Adh Migr; 2010; 4(4):561-6. PubMed ID: 20657170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical role for PDGFRα signaling in medial nasal process development.
    He F; Soriano P
    PLoS Genet; 2013; 9(9):e1003851. PubMed ID: 24086166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Notch pathway regulation of neural crest cell development in vivo.
    Mead TJ; Yutzey KE
    Dev Dyn; 2012 Feb; 241(2):376-89. PubMed ID: 22275227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SWI/SNF BAF-A complex is essential for neural crest development.
    Chandler RL; Magnuson T
    Dev Biol; 2016 Mar; 411(1):15-24. PubMed ID: 26806701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.