These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12490722)

  • 21. Domains of Mnt repressor: roles in tetramer formation, protein stability, and operator DNA binding.
    Waldburger CD; Sauer RT
    Biochemistry; 1995 Oct; 34(40):13109-16. PubMed ID: 7548071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Indirect readout of DNA sequence by p22 repressor: roles of DNA and protein functional groups in modulating DNA conformation.
    Harris LA; Watkins D; Williams LD; Koudelka GB
    J Mol Biol; 2013 Jan; 425(1):133-43. PubMed ID: 23085222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. P22 Arc repressor: role of cooperativity in repression and binding to operators with altered half-site spacing.
    Smith TL; Sauer RT
    J Mol Biol; 1995 Jun; 249(4):729-42. PubMed ID: 7602585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dramatic changes in DNA-binding specificity caused by single residue substitutions in an Arc/Mnt hybrid repressor.
    Raumann BE; Knight KL; Sauer RT
    Nat Struct Biol; 1995 Dec; 2(12):1115-22. PubMed ID: 8846224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carboxyl-terminal domain dimer interface mutant 434 repressors have altered dimerization and DNA binding specificities.
    Donner AL; Paa K; Koudelka GB
    J Mol Biol; 1998 Nov; 283(5):931-46. PubMed ID: 9799634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arc repressor-operator DNA interactions and contribution of Phe10 to binding specificity.
    Dostál L; Misselwitz R; Welfle H
    Biochemistry; 2005 Jun; 44(23):8387-96. PubMed ID: 15938628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-chain repressors containing engineered DNA-binding domains of the phage 434 repressor recognize symmetric or asymmetric DNA operators.
    Simoncsits A; Chen J; Percipalle P; Wang S; Törö I; Pongor S
    J Mol Biol; 1997 Mar; 267(1):118-31. PubMed ID: 9096211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An aromatic stacking interaction between subunits helps mediate DNA sequence specificity: operator site discrimination by phage lambda cI repressor.
    Huang YT; Rusinova E; Ross JB; Senear DF
    J Mol Biol; 1997 Mar; 267(2):403-17. PubMed ID: 9096234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined conformational search and finite-difference Poisson-Boltzmann approach for flexible docking. Application to an operator mutation in the lambda repressor-operator complex.
    Zacharias M; Luty BA; Davis ME; McCammon JA
    J Mol Biol; 1994 May; 238(3):455-65. PubMed ID: 8176736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bending of synthetic bacteriophage 434 operators by bacteriophage 434 proteins.
    Koudelka GB
    Nucleic Acids Res; 1991 Aug; 19(15):4115-9. PubMed ID: 1870967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Specificity of binding of regulatory proteins with DNA: possible explanation in terms of "point" interactions].
    Gul'tiaev AP; Zheltovskiĭ NV
    Mol Biol (Mosk); 1986; 20(3):827-37. PubMed ID: 2941680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changing the DNA-binding specificity of a repressor.
    Youderian P; Vershon A; Bouvier S; Sauer RT; Susskind MM
    Cell; 1983 Dec; 35(3 Pt 2):777-83. PubMed ID: 6652685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions.
    Glasfeld A; Koehler AN; Schumacher MA; Brennan RG
    J Mol Biol; 1999 Aug; 291(2):347-61. PubMed ID: 10438625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA twisting and the affinity of bacteriophage 434 operator for bacteriophage 434 repressor.
    Koudelka GB; Harbury P; Harrison SC; Ptashne M
    Proc Natl Acad Sci U S A; 1988 Jul; 85(13):4633-7. PubMed ID: 3387430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamics of E. coli cytidine repressor interactions with DNA: distinct modes of binding to different operators suggests a role in differential gene regulation.
    Tretyachenko-Ladokhina V; Ross JB; Senear DF
    J Mol Biol; 2002 Feb; 316(3):531-46. PubMed ID: 11866516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction with DNA of oligopeptides related to the Arc repressor.
    Helbecque N; el Idrissi Boutaher A; Hénichart JP
    Pept Res; 1996; 9(1):21-7. PubMed ID: 8727480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the lysogenic repressor (c) gene of the Pseudomonas aeruginosa transposable bacteriophage D3112.
    Salmon KA; Freedman O; Ritchings BW; DuBow MS
    Virology; 2000 Jun; 272(1):85-97. PubMed ID: 10873751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational and experimental probes of symmetry mismatches in the Arc repressor-DNA complex.
    Spector S; Sauer RT; Tidor B
    J Mol Biol; 2004 Jul; 340(2):253-61. PubMed ID: 15201050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact.
    Wharton RP; Ptashne M
    Nature; 1987 Apr 30-May 6; 326(6116):888-91. PubMed ID: 3553961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.