These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 12491310)

  • 1. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks.
    Lewis WG; Green LG; Grynszpan F; Radić Z; Carlier PR; Taylor P; Finn MG; Sharpless KB
    Angew Chem Int Ed Engl; 2002 Mar; 41(6):1053-7. PubMed ID: 12491310
    [No Abstract]   [Full Text] [Related]  

  • 2. In situ click chemistry: enzyme inhibitors made to their own specifications.
    Manetsch R; Krasiński A; Radić Z; Raushel J; Taylor P; Sharpless KB; Kolb HC
    J Am Chem Soc; 2004 Oct; 126(40):12809-18. PubMed ID: 15469276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic deconvolution of a pre-equilibrated dynamic combinatorial library of acetylcholinesterase inhibitors.
    Bunyapaiboonsri T; Ramström O; Lohmann S; Lehn JM; Peng L; Goeldner M
    Chembiochem; 2001 Jun; 2(6):438-44. PubMed ID: 11828475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitors.
    Krasiński A; Radić Z; Manetsch R; Raushel J; Taylor P; Sharpless KB; Kolb HC
    J Am Chem Soc; 2005 May; 127(18):6686-92. PubMed ID: 15869290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards improved acetylcholinesterase inhibitors: a structural and computational approach.
    Barril X; Orozco M; Luque FJ
    Mini Rev Med Chem; 2001 Sep; 1(3):255-66. PubMed ID: 12369972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated docking with protein flexibility in the design of femtomolar "click chemistry" inhibitors of acetylcholinesterase.
    Morris GM; Green LG; Radić Z; Taylor P; Sharpless KB; Olson AJ; Grynszpan F
    J Chem Inf Model; 2013 Apr; 53(4):898-906. PubMed ID: 23451944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors.
    Mizutani MY; Itai A
    J Med Chem; 2004 Sep; 47(20):4818-28. PubMed ID: 15369385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combinatorial feature selection approach to describe the QSAR of dual site inhibitors of acetylcholinesterase.
    Asadabadi EB; Abdolmaleki P; Barkooie SM; Jahandideh S; Rezaei MA
    Comput Biol Med; 2009 Dec; 39(12):1089-95. PubMed ID: 19854437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis and evaluation of isaindigotone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors.
    Pan L; Tan JH; Hou JQ; Huang SL; Gu LQ; Huang ZS
    Bioorg Med Chem Lett; 2008 Jul; 18(13):3790-3. PubMed ID: 18524585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.
    Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL
    J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structure-based design approach to the development of novel, reversible AChE inhibitors.
    Doucet-Personeni C; Bentley PD; Fletcher RJ; Kinkaid A; Kryger G; Pirard B; Taylor A; Taylor R; Taylor J; Viner R; Silman I; Sussman JL; Greenblatt HM; Lewis T
    J Med Chem; 2001 Sep; 44(20):3203-15. PubMed ID: 11563919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors.
    Savini L; Gaeta A; Fattorusso C; Catalanotti B; Campiani G; Chiasserini L; Pellerano C; Novellino E; McKissic D; Saxena A
    J Med Chem; 2003 Jan; 46(1):1-4. PubMed ID: 12502352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors.
    Alpan AS; Parlar S; Carlino L; Tarikogullari AH; Alptüzün V; Güneş HS
    Bioorg Med Chem; 2013 Sep; 21(17):4928-37. PubMed ID: 23891231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 A resolution: kinetic and molecular dynamic correlates.
    Dvir H; Wong DM; Harel M; Barril X; Orozco M; Luque FJ; Muñoz-Torrero D; Camps P; Rosenberry TL; Silman I; Sussman JL
    Biochemistry; 2002 Mar; 41(9):2970-81. PubMed ID: 11863435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of α-oxycarbanilinophosphonates and their anticholinesterase activities: the most potent derivative is bound to the peripheral site of acetylcholinesterase.
    Kaboudin B; Emadi S; Faghihi MR; Fallahi M; Sheikh-Hasani V
    J Enzyme Inhib Med Chem; 2013 Jun; 28(3):576-82. PubMed ID: 22397393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and acetylcholinesterase inhibitory activity of polyhydroxylated sulfated steroids: structure/activity studies.
    Richmond V; Murray AP; Maier MS
    Steroids; 2013 Nov; 78(11):1141-7. PubMed ID: 23973658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New potent acetylcholinesterase inhibitors in the tetracyclic triterpene series.
    Sauvaître T; Barlier M; Herlem D; Gresh N; Chiaroni A; Guenard D; Guillou C
    J Med Chem; 2007 Nov; 50(22):5311-23. PubMed ID: 17902635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and biological evaluation of 3,6-diaryl-7H-thiazolo[3,2-b] [1,2,4]triazin-7-one derivatives as acetylcholinesterase inhibitors.
    Jin Z; Yang L; Liu SJ; Wang J; Li S; Lin HQ; Wan DC; Hu C
    Arch Pharm Res; 2010 Oct; 33(10):1641-9. PubMed ID: 21052939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors.
    Huang L; Shi A; He F; Li X
    Bioorg Med Chem; 2010 Feb; 18(3):1244-51. PubMed ID: 20056426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and biological evaluation of a new series of berberine derivatives as dual inhibitors of acetylcholinesterase and butyrylcholinesterase.
    Huang L; Luo Z; He F; Lu J; Li X
    Bioorg Med Chem; 2010 Jun; 18(12):4475-84. PubMed ID: 20471843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.