These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 12492239)
1. Theory of electron-optical achromats and apochromats. Rose H Ultramicroscopy; 2002 Dec; 93(3-4):293-303. PubMed ID: 12492239 [TBL] [Abstract][Full Text] [Related]
2. Partial fraction expansion of electron optical cardinal elements. Schiske P Ultramicroscopy; 1977 Apr; 2(2-3):193-8. PubMed ID: 888238 [TBL] [Abstract][Full Text] [Related]
3. Electrostatic correction of the chromatic and of the spherical aberration of charged-particle lenses (part II). Weitbssäcker C; Rose H J Electron Microsc (Tokyo); 2002; 51(1):45-51. PubMed ID: 12003241 [TBL] [Abstract][Full Text] [Related]
4. 3D printed hybrid refractive/diffractive achromat and apochromat for the visible wavelength range. Schmid M; Sterl F; Thiele S; Herkommer A; Giessen H Opt Lett; 2021 May; 46(10):2485-2488. PubMed ID: 33988620 [TBL] [Abstract][Full Text] [Related]
5. Electrostatic correction of the chromatic and of the spherical aberration of charged-particle lenses (part I). Weissbäcker C; Rose H J Electron Microsc (Tokyo); 2001; 50(5):383-90. PubMed ID: 11794613 [TBL] [Abstract][Full Text] [Related]
6. THE DIFFRACTION THEORY OF THE ABERRATIONS OF STIGMATIC ORTHOMORPHIC OPTICAL OR ELECTRON OPTICAL SYSTEMS CONTAINING TORIC LENSES OR QUADRUPOLES. HAWKES PW Opt Acta (Lond); 1964 Oct; 11():237-51. PubMed ID: 14251015 [No Abstract] [Full Text] [Related]
7. The objective lens of the electron microscope with correction of spherical and axial chromatic aberrations. Bimurzaev SB; Aldiyarov NU; Yakushev EM Microscopy (Oxf); 2017 Oct; 66(5):356-365. PubMed ID: 29016920 [TBL] [Abstract][Full Text] [Related]
8. Aberrations in asymmetrical electron lenses. Fitzgerald JP; Word RC; Könenkamp R Ultramicroscopy; 2012 Aug; 119():40-4. PubMed ID: 22206603 [TBL] [Abstract][Full Text] [Related]
9. Analysis of three-element zoom lens based on refractive variable-focus lenses. Miks A; Novak J Opt Express; 2011 Nov; 19(24):23989-96. PubMed ID: 22109423 [TBL] [Abstract][Full Text] [Related]
10. Magnetic C Rose H; Nejati A; Müller H Ultramicroscopy; 2019 Aug; 203():139-144. PubMed ID: 30553616 [TBL] [Abstract][Full Text] [Related]
11. Analysis of two-element zoom systems based on variable power lenses. Miks A; Novak J Opt Express; 2010 Mar; 18(7):6797-810. PubMed ID: 20389699 [TBL] [Abstract][Full Text] [Related]
12. Simplified computation of third-rank image aberrations of electron-optical systems with curved axis. Plies E Ultramicroscopy; 2002 Dec; 93(3-4):305-19. PubMed ID: 12492240 [TBL] [Abstract][Full Text] [Related]
13. Filtering Chromatic Aberration for Wide Acceptance Angle Electrostatic Lenses II--Experimental Evaluation and Software-Based Imaging Energy Analyzer. Fazekas Á; Daimon H; Matsuda H; Tóth L IEEE Trans Image Process; 2016 Mar; 25(3):1441-50. PubMed ID: 26863662 [TBL] [Abstract][Full Text] [Related]
14. Design for an aberration corrected scanning electron microscope using miniature electron mirrors. Dohi H; Kruit P Ultramicroscopy; 2018 Jun; 189():1-23. PubMed ID: 29574382 [TBL] [Abstract][Full Text] [Related]
15. Hybrid diffractive-refractive lenses and achromats. Stone T; George N Appl Opt; 1988 Jul; 27(14):2960-71. PubMed ID: 20531870 [TBL] [Abstract][Full Text] [Related]
16. Third-rank chromatic aberrations of electron lenses. Liu Z Ultramicroscopy; 2018 Feb; 185():27-31. PubMed ID: 29175744 [TBL] [Abstract][Full Text] [Related]
17. Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption. Vogel A; Nahen K; Theisen D; Birngruber R; Thomas RJ; Rockwell BA Appl Opt; 1999 Jun; 38(16):3636-43. PubMed ID: 18319968 [TBL] [Abstract][Full Text] [Related]