BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12492242)

  • 1. Aberration characteristics of immersion lenses for LVSEM.
    Khursheed A
    Ultramicroscopy; 2002 Dec; 93(3-4):331-8. PubMed ID: 12492242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy.
    Martini N; Bewersdorf J; Hell SW
    J Microsc; 2002 May; 206(Pt 2):146-51. PubMed ID: 12000554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic correction of the chromatic and of the spherical aberration of charged-particle lenses (part I).
    Weissbäcker C; Rose H
    J Electron Microsc (Tokyo); 2001; 50(5):383-90. PubMed ID: 11794613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and optimization of a conical electrostatic objective lens of a low-voltage scanning electron microscope for surface imaging and analysis in ultra-high-vacuum environment.
    Lee JW; Park IY; Ogawa T
    Ultramicroscopy; 2024 Mar; 257():113908. PubMed ID: 38134559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial resolution measurements of miniaturized electrostatic lenses for LVSEM.
    Lutsch RY; Plies E
    Ultramicroscopy; 2002 Dec; 93(3-4):339-45. PubMed ID: 12492243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immersion Meta-Lenses at Visible Wavelengths for Nanoscale Imaging.
    Chen WT; Zhu AY; Khorasaninejad M; Shi Z; Sanjeev V; Capasso F
    Nano Lett; 2017 May; 17(5):3188-3194. PubMed ID: 28388086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chicago aberration correction work.
    Beck VD
    Ultramicroscopy; 2012 Dec; 123():22-7. PubMed ID: 22795625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Monochromator with Offset Cylindrical Lenses and Its Application to a Low-Voltage Scanning Electron Microscope.
    Ogawa T; Yamazawa Y; Kawai S; Mouri A; Katane J; Park IY; Takai Y; Agemura T
    Microsc Microanal; 2022 Feb; ():1-13. PubMed ID: 35164889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developments in low-voltage microscopy instrumentation.
    Muray LP
    Scanning; 2011; 33(3):155-61. PubMed ID: 21638290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic correction of the chromatic and of the spherical aberration of charged-particle lenses (part II).
    Weitbssäcker C; Rose H
    J Electron Microsc (Tokyo); 2002; 51(1):45-51. PubMed ID: 12003241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy.
    Gibson SF; Lanni F
    J Opt Soc Am A; 1992 Jan; 9(1):154-66. PubMed ID: 1738047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Electrostatic Aberration Correctors for Scanning Transmission Electron Microscopy.
    Ribet SM; Zeltmann SE; Bustillo KC; Dhall R; Denes P; Minor AM; Dos Reis R; Dravid VP; Ophus C
    Microsc Microanal; 2023 Dec; 29(6):1950-1960. PubMed ID: 37851063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design for an aberration corrected scanning electron microscope using miniature electron mirrors.
    Dohi H; Kruit P
    Ultramicroscopy; 2018 Jun; 189():1-23. PubMed ID: 29574382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential algebraic method for aberration analysis of typical electrostatic lenses.
    Liu Z
    Ultramicroscopy; 2006 Feb; 106(3):220-32. PubMed ID: 16125845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution imaging properties of the STEM.
    Beck V; Crewe AV
    Ultramicroscopy; 1975 Dec; 1(2):137-44. PubMed ID: 1236026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current and future aberration correctors for the improvement of resolution in electron microscopy.
    Haider M; Hartel P; Müller H; Uhlemann S; Zach J
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1903):3665-82. PubMed ID: 19687059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of spherical and chromatic aberration in axial-scanning optical systems with tunable lenses.
    Strother JA
    Biomed Opt Express; 2021 Jun; 12(6):3530-3552. PubMed ID: 34221677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking the spherical and chromatic aberration barrier in transmission electron microscopy.
    Freitag B; Kujawa S; Mul PM; Ringnalda J; Tiemeijer PC
    Ultramicroscopy; 2005 Feb; 102(3):209-14. PubMed ID: 15639351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First- and third-order chromatic aberrations in Glaser magnetic lens for object magnetic immersion.
    Amer A; Ahmad AK
    Heliyon; 2023 Dec; 9(12):e22825. PubMed ID: 38125542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Third-order aberration theory of Wien filters for monochromators and aberration correctors.
    Tsuno K; Ioanoviciu D; Martínez G
    J Microsc; 2005 Mar; 217(Pt 3):205-15. PubMed ID: 15725124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.