These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12492242)

  • 21. Evaluation of residual aberration in fifth-order geometrical aberration correctors.
    Morishita S; Kohno Y; Hosokawa F; Suenaga K; Sawada H
    Microscopy (Oxf); 2018 Jun; 67(3):156-163. PubMed ID: 29474670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Initial resolution measurements of an improved magnetic-electrostatic detector objective lens for LVSEM.
    Knell G; Plies E
    Ultramicroscopy; 2000 Apr; 81(3-4):123-7. PubMed ID: 10782637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Annular Focused Electron/Ion Beams for Combining High Spatial Resolution with High Probe Current.
    Khursheed A; Ang WK
    Microsc Microanal; 2016 Oct; 22(5):948-954. PubMed ID: 27608813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-vacuum, low-voltage scanning electron microscopy of poly(methyl methacrylate) intraocular lenses.
    Hayashi H; Oshima K
    J Cataract Refract Surg; 1998 Mar; 24(3):385-9. PubMed ID: 9559476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sub-ångstrom resolution using aberration corrected electron optics.
    Batson PE; Dellby N; Krivanek OL
    Nature; 2002 Aug; 418(6898):617-20. PubMed ID: 12167855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and characterization of low aberration micrometer-sized electron lenses.
    Steinwand E; Longchamp JN; Fink HW
    Ultramicroscopy; 2010 Aug; 110(9):1148-53. PubMed ID: 20462698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe.
    Hoy CL; Ferhanoğlu O; Yildirim M; Piyawattanametha W; Ra H; Solgaard O; Ben-Yakar A
    Opt Express; 2011 May; 19(11):10536-52. PubMed ID: 21643308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Singlet gradient index lens for deep in vivo multiphoton microscopy.
    Murray TA; Levene MJ
    J Biomed Opt; 2012 Feb; 17(2):021106. PubMed ID: 22463024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy.
    Sannomiya T; Sawada H; Nakamichi T; Hosokawa F; Nakamura Y; Tanishiro Y; Takayanagi K
    Ultramicroscopy; 2013 Dec; 135():71-9. PubMed ID: 23911859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher.
    Maceo Heilman B; Manns F; de Castro A; Durkee H; Arrieta E; Marcos S; Parel JM
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1743-50. PubMed ID: 25670492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variable immersion microscopy with a high numerical aperture.
    Ishida K; Naruse K; Mizouchi Y; Ogawa Y; Matsushita M; Shimi T; Kimura H; Fujiyoshi S
    Opt Lett; 2021 Feb; 46(4):856-859. PubMed ID: 33577531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aberration-compensated supercritical lens for sub-diffractive focusing within 20° field of view.
    Duan H; Wang M; Hu X; Li Z; Jiang M; Wang S; Cao Y; Li X; Qin F
    Opt Lett; 2023 May; 48(10):2523-2526. PubMed ID: 37186698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Future trends in aberration-corrected electron microscopy.
    Rose HH
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1903):3809-23. PubMed ID: 19687067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lenses for Electron Microscopy and Microanalysis: Shadowgraph Method of Determining Focal Properties and Aberration Coefficients.
    Rempfer GF; Fyfield MS; Griffith OH
    Microsc Microanal; 1998 Jan; 4(1):34-49. PubMed ID: 9524144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metaoptics for aberration correction in microendoscopy.
    Thomas S; George JG; Ferranti F; Bhattacharya S
    Opt Express; 2024 Mar; 32(6):9686-9698. PubMed ID: 38571197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The objective lens of the electron microscope with correction of spherical and axial chromatic aberrations.
    Bimurzaev SB; Aldiyarov NU; Yakushev EM
    Microscopy (Oxf); 2017 Oct; 66(5):356-365. PubMed ID: 29016920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of Cs and Cc correctors for transmission electron microscopy.
    Hosokawa F; Sawada H; Kondo Y; Takayanagi K; Suenaga K
    Microscopy (Oxf); 2013 Feb; 62(1):23-41. PubMed ID: 23390310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploiting the full potential of the advanced two-hexapole corrector for STEM exemplified at 60kV.
    Sagawa R; Yasuhara A; Hashiguchi H; Naganuma T; Tanba S; Ishikawa T; Riedel T; Hartel P; Linck M; Uhlemann S; Müller H; Sawada H
    Ultramicroscopy; 2022 Mar; 233():113440. PubMed ID: 34920279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Contrast Transfer Function approach for image calculations in standard and aberration-corrected LEEM and PEEM.
    Schramm SM; Pang AB; Altman MS; Tromp RM
    Ultramicroscopy; 2012 Apr; 115():88-108. PubMed ID: 22209472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collection of secondary electrons in scanning electron microscopes.
    Müllerová I; Konvalina I
    J Microsc; 2009 Dec; 236(3):203-10. PubMed ID: 19941560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.