BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 12492485)

  • 1. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone.
    Yamada S; Ono T; Mizuno A; Nemoto TK
    Eur J Biochem; 2003 Jan; 270(1):146-54. PubMed ID: 12492485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liberation of the intramolecular interaction as the mechanism of heat-induced activation of HSP90 molecular chaperone.
    Tanaka E; Nemoto TK; Ono T
    Eur J Biochem; 2001 Oct; 268(20):5270-7. PubMed ID: 11606188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-binding characteristics of proteins in the 90 kDa heat shock protein family.
    Nemoto TK; Ono T; Tanaka K
    Biochem J; 2001 Mar; 354(Pt 3):663-70. PubMed ID: 11237871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The region adjacent to the highly immunogenic site and shielded by the middle domain is responsible for self-oligomerization/client binding of the HSP90 molecular chaperone.
    Nemoto TK; Fukuma Y; Yamada S; Kobayakawa T; Ono T; Ohara-Nemoto Y
    Biochemistry; 2004 Jun; 43(23):7628-36. PubMed ID: 15182205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70.
    Carrello A; Allan RK; Morgan SL; Owen BA; Mok D; Ward BK; Minchin RF; Toft DO; Ratajczak T
    Cell Stress Chaperones; 2004; 9(2):167-81. PubMed ID: 15497503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain-domain interactions of HtpG, an Escherichia coli homologue of eukaryotic HSP90 molecular chaperone.
    Nemoto TK; Ono T; Kobayakawa T; Tanaka E; Baba TT; Tanaka K; Takagi T; Gotoh T
    Eur J Biochem; 2001 Oct; 268(20):5258-69. PubMed ID: 11606187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding and Domain Interactions of Three Orthologs of Hsp90 Studied by Single-Molecule Force Spectroscopy.
    Jahn M; Tych K; Girstmair H; Steinmaßl M; Hugel T; Buchner J; Rief M
    Structure; 2018 Jan; 26(1):96-105.e4. PubMed ID: 29276035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico identification of carboxylate clamp type tetratricopeptide repeat proteins in Arabidopsis and rice as putative co-chaperones of Hsp90/Hsp70.
    Prasad BD; Goel S; Krishna P
    PLoS One; 2010 Sep; 5(9):e12761. PubMed ID: 20856808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization.
    Allan RK; Mok D; Ward BK; Ratajczak T
    J Biol Chem; 2006 Mar; 281(11):7161-71. PubMed ID: 16421106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of the C-terminal domain of Harc for binding to Hsp70 and Hop as well as its response to heat shock.
    Cartledge K; Elsegood C; Roiniotis J; Hamilton JA; Scholz GM
    Biochemistry; 2007 Dec; 46(51):15144-52. PubMed ID: 18052042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Definition of the minimal fragments of Sti1 required for dimerization, interaction with Hsp70 and Hsp90 and in vivo functions.
    Flom G; Behal RH; Rosen L; Cole DG; Johnson JL
    Biochem J; 2007 May; 404(1):159-67. PubMed ID: 17300223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones.
    Schulte TW; Akinaga S; Murakata T; Agatsuma T; Sugimoto S; Nakano H; Lee YS; Simen BB; Argon Y; Felts S; Toft DO; Neckers LM; Sharma SV
    Mol Endocrinol; 1999 Sep; 13(9):1435-48. PubMed ID: 10478836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop.
    Schmid AB; Lagleder S; Gräwert MA; Röhl A; Hagn F; Wandinger SK; Cox MB; Demmer O; Richter K; Groll M; Kessler H; Buchner J
    EMBO J; 2012 Mar; 31(6):1506-17. PubMed ID: 22227520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90.
    Chadli A; Bouhouche I; Sullivan W; Stensgard B; McMahon N; Catelli MG; Toft DO
    Proc Natl Acad Sci U S A; 2000 Nov; 97(23):12524-9. PubMed ID: 11050175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substitution of only two residues of human Hsp90alpha causes impeded dimerization of Hsp90beta.
    Kobayakawa T; Yamada S; Mizuno A; Nemoto TK
    Cell Stress Chaperones; 2008; 13(1):97-104. PubMed ID: 18347946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaperone Activity and Dimerization Properties of Hsp90
    Morishima Y; Mehta RK; Yoshimura M; Lau M; Southworth DR; Lawrence TS; Pratt WB; Nyati MK; Osawa Y
    Mol Pharmacol; 2018 Sep; 94(3):984-991. PubMed ID: 29941666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains.
    Prodromou C; Panaretou B; Chohan S; Siligardi G; O'Brien R; Ladbury JE; Roe SM; Piper PW; Pearl LH
    EMBO J; 2000 Aug; 19(16):4383-92. PubMed ID: 10944121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimerization characteristics of the 94-kDa glucose-regulated protein.
    Nemoto T; Matsusaka T; Ota M; Takagi T; Collinge DB; Walther-Larsen H
    J Biochem; 1996 Aug; 120(2):249-56. PubMed ID: 8889807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of novel quaternary domain interactions in the Hsp90 chaperone, GRP94.
    Chu F; Maynard JC; Chiosis G; Nicchitta CV; Burlingame AL
    Protein Sci; 2006 Jun; 15(6):1260-9. PubMed ID: 16731965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.