BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 12493833)

  • 1. Induced fit in guanidino kinases--comparison of substrate-free and transition state analog structures of arginine kinase.
    Yousef MS; Clark SA; Pruett PK; Somasundaram T; Ellington WR; Chapman MS
    Protein Sci; 2003 Jan; 12(1):103-11. PubMed ID: 12493833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of phosphagen specificity loops in arginine kinase.
    Azzi A; Clark SA; Ellington WR; Chapman MS
    Protein Sci; 2004 Mar; 13(3):575-85. PubMed ID: 14978299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of arginine kinase in complex with ADP, nitrate, and various phosphagen analogs.
    Clark SA; Davulcu O; Chapman MS
    Biochem Biophys Res Commun; 2012 Oct; 427(1):212-7. PubMed ID: 22995310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine kinase: joint crystallographic and NMR RDC analyses link substrate-associated motions to intrinsic flexibility.
    Niu X; Bruschweiler-Li L; Davulcu O; Skalicky JJ; Brüschweiler R; Chapman MS
    J Mol Biol; 2011 Jan; 405(2):479-96. PubMed ID: 21075117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induced fit in arginine kinase.
    Zhou G; Ellington WR; Chapman MS
    Biophys J; 2000 Mar; 78(3):1541-50. PubMed ID: 10692338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions.
    Zhou G; Somasundaram T; Blanc E; Parthasarathy G; Ellington WR; Chapman MS
    Proc Natl Acad Sci U S A; 1998 Jul; 95(15):8449-54. PubMed ID: 9671698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated μs-ms timescale backbone dynamics in the transition state analog form of arginine kinase.
    Davulcu O; Peng Y; Brüschweiler R; Skalicky JJ; Chapman MS
    J Struct Biol; 2017 Dec; 200(3):258-266. PubMed ID: 28495594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refinement of the arginine kinase transition-state analogue complex at 1.2 A resolution: mechanistic insights.
    Yousef MS; Fabiola F; Gattis JL; Somasundaram T; Chapman MS
    Acta Crystallogr D Biol Crystallogr; 2002 Dec; 58(Pt 12):2009-17. PubMed ID: 12454458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase.
    Pruett PS; Azzi A; Clark SA; Yousef MS; Gattis JL; Somasundaram T; Ellington WR; Chapman MS
    J Biol Chem; 2003 Jul; 278(29):26952-7. PubMed ID: 12732621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Sampling of Conformational Dynamics in Ambient-Temperature Crystal Structures of Arginine Kinase.
    Godsey MH; Davulcu O; Nix JC; Skalicky JJ; Brüschweiler RP; Chapman MS
    Structure; 2016 Oct; 24(10):1658-1667. PubMed ID: 27594681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of horseshoe crab arginine kinase in Escherichia coli and site-directed mutations of the reactive cysteine peptide.
    Strong SJ; Ellington WR
    Comp Biochem Physiol B Biochem Mol Biol; 1996 Apr; 113(4):809-16. PubMed ID: 8925449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The active site cysteine of arginine kinase: structural and functional analysis of partially active mutants.
    Gattis JL; Ruben E; Fenley MO; Ellington WR; Chapman MS
    Biochemistry; 2004 Jul; 43(27):8680-9. PubMed ID: 15236576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression, purification from inclusion bodies, and crystal characterization of a transition state analog complex of arginine kinase: a model for studying phosphagen kinases.
    Zhou G; Parthasarathy G; Somasundaram T; Ables A; Roy L; Strong SJ; Ellington WR; Chapman MS
    Protein Sci; 1997 Feb; 6(2):444-9. PubMed ID: 9041648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-limiting domain and loop motions in arginine kinase.
    Davulcu O; Skalicky JJ; Chapman MS
    Biochemistry; 2011 May; 50(19):4011-8. PubMed ID: 21425868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-domain arginine kinase from the deep-sea clam Calyptogena kaikoi--evidence of two active domains.
    Uda K; Yamamoto K; Iwasaki N; Iwai M; Fujikura K; Ellington WR; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Oct; 151(2):176-82. PubMed ID: 18639645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural changes of creatine kinase upon substrate binding.
    Forstner M; Kriechbaum M; Laggner P; Wallimann T
    Biophys J; 1998 Aug; 75(2):1016-23. PubMed ID: 9675202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic properties and structural characteristics of an unusual two-domain arginine kinase of the clam Corbicula japonica.
    Suzuki T; Tomoyuki T; Uda K
    FEBS Lett; 2003 Jan; 533(1-3):95-8. PubMed ID: 12505165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and sequence analysis of the gene for arginine kinase from the chelicerate arthropod, Limulus polyphemus: insights into catalytically important residues.
    Strong SJ; Ellington WR
    Biochim Biophys Acta; 1995 Jan; 1246(2):197-200. PubMed ID: 7819288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.