These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 12495817)

  • 1. Aluminum detoxification in Pseudomonas fluorescens is mediated by oxalate and phosphatidylethanolamine.
    Hamel R; Appanna VD
    Biochim Biophys Acta; 2003 Jan; 1619(1):70-6. PubMed ID: 12495817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The metabolism of aluminum citrate and biosynthesis of oxalic acid in Pseudomonas fluorescens.
    Appanna VD; Hamel RD; Lévasseur R
    Curr Microbiol; 2003 Jul; 47(1):32-9. PubMed ID: 12783190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of Pseudomonas fluorescens to Al-citrate: involvement of tricarboxylic acid and glyoxylate cycle enzymes and the influence of phosphate.
    Appanna VD; Hamel R; Mackenzie C; Kumar P; Kalyuzhnyi SV
    Curr Microbiol; 2003 Dec; 47(6):521-7. PubMed ID: 14756538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxalic acid production and aluminum tolerance in Pseudomonas fluorescens.
    Hamel R; Levasseur R; Appanna VD
    J Inorg Biochem; 1999 Aug; 76(2):99-104. PubMed ID: 10612061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aluminum detoxication mechanism in Pseudomonas fluorescens is dependent on iron.
    Appanna VD; Hamel R
    FEMS Microbiol Lett; 1996 Oct; 143(2-3):223-8. PubMed ID: 8964457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of TCA cycle enzymes and aluminum stress in Pseudomonas fluorescens.
    Hamel RD; Appanna VD
    J Inorg Biochem; 2001 Nov; 87(1-2):1-8. PubMed ID: 11709206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ATP and oxalate generating variant tricarboxylic acid cycle counters aluminum toxicity in Pseudomonas fluorescens.
    Singh R; Lemire J; Mailloux RJ; Chénier D; Hamel R; Appanna VD
    PLoS One; 2009 Oct; 4(10):e7344. PubMed ID: 19809498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular response to a multiple-metal stress in Pseudomonas fluorescens.
    Appanna VD; St Pierre M
    J Biotechnol; 1996 Jul; 48(1-2):129-36. PubMed ID: 8818279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of organic acids in detoxification of aluminum in higher plants.
    Ma JF
    Plant Cell Physiol; 2000 Apr; 41(4):383-90. PubMed ID: 10845450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel metabolic network leads to enhanced citrate biogenesis in Pseudomonas fluorescens exposed to aluminum toxicity.
    Mailloux RJ; Lemire J; Kalyuzhnyi S; Appanna V
    Extremophiles; 2008 May; 12(3):451-9. PubMed ID: 18335165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: implications for the bioremediation of metal pollutants.
    Alhasawi A; Costanzi J; Auger C; Appanna ND; Appanna VD
    J Biotechnol; 2015 Apr; 200():38-43. PubMed ID: 25724118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity.
    Lemire J; Mailloux R; Auger C; Whalen D; Appanna VD
    Environ Microbiol; 2010 Jun; 12(6):1384-90. PubMed ID: 20353438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic reengineering invoked by microbial systems to decontaminate aluminum: implications for bioremediation technologies.
    Auger C; Han S; Appanna VP; Thomas SC; Ulibarri G; Appanna VD
    Biotechnol Adv; 2013; 31(2):266-73. PubMed ID: 23201464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum Elicits Exocellular Phosphatidylethanolamine Production in Pseudomonas fluorescens.
    Appanna VD; Pierre MS
    Appl Environ Microbiol; 1996 Aug; 62(8):2778-82. PubMed ID: 16535374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Form of Al changes with Al concentration in leaves of buckwheat.
    Shen R; Iwashita T; Ma JF
    J Exp Bot; 2004 Jan; 55(394):131-6. PubMed ID: 14645389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxalate exudation into the root-tip water free space confers protection from aluminum toxicity and allows aluminum accumulation in the symplast in buckwheat (Fagopyrum esculentum).
    Klug B; Horst WJ
    New Phytol; 2010 Jul; 187(2):380-391. PubMed ID: 20487309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic adaptation and oxaloacetate homeostasis in P. fluorescens exposed to aluminum toxicity.
    Lemire J; Kumar P; Mailloux R; Cossar K; Appanna VD
    J Basic Microbiol; 2008 Aug; 48(4):252-9. PubMed ID: 18720501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of isocitrate lyase is an important strategy in the survival of Pseudomonas fluorescens exposed to aluminum.
    Hamel R; Appanna VD; Viswanatha T; Puiseux-Dao S
    Biochem Biophys Res Commun; 2004 May; 317(4):1189-94. PubMed ID: 15094395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aluminum triggers decreased aconitase activity via Fe-S cluster disruption and the overexpression of isocitrate dehydrogenase and isocitrate lyase: a metabolic network mediating cellular survival.
    Middaugh J; Hamel R; Jean-Baptiste G; Beriault R; Chenier D; Appanna VD
    J Biol Chem; 2005 Feb; 280(5):3159-65. PubMed ID: 15548528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Naphthalene uptake by a Pseudomonas fluorescens isolate.
    Whitman BE; Lueking DR; Mihelcic JR
    Can J Microbiol; 1998 Nov; 44(11):1086-93. PubMed ID: 10030003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.