BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

605 related articles for article (PubMed ID: 12495904)

  • 41. Leukaemia -- a developmental perspective.
    Izraeli S
    Br J Haematol; 2004 Jul; 126(1):3-10. PubMed ID: 15198727
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Familial mutations of the transcription factor RUNX1 (AML1, CBFA2) predispose to acute myeloid leukemia.
    Ganly P; Walker LC; Morris CM
    Leuk Lymphoma; 2004 Jan; 45(1):1-10. PubMed ID: 15061191
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Runx1 is required for hematopoietic defects and leukemogenesis in Cbfb-MYH11 knock-in mice.
    Hyde RK; Zhao L; Alemu L; Liu PP
    Leukemia; 2015 Aug; 29(8):1771-8. PubMed ID: 25742748
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ETV6/RUNX1 fusion at diagnosis and relapse: some prognostic indications.
    Martineau M; Jalali GR; Barber KE; Broadfield ZJ; Cheung KL; Lilleyman J; Moorman AV; Richards S; Robinson HM; Ross F; Harrison CJ
    Genes Chromosomes Cancer; 2005 May; 43(1):54-71. PubMed ID: 15704129
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Runx genes: lineage-specific oncogenes and tumor suppressors.
    Cameron ER; Neil JC
    Oncogene; 2004 May; 23(24):4308-14. PubMed ID: 15156187
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Requisite roles of Runx2 and Cbfb in skeletal development.
    Komori T
    J Bone Miner Metab; 2003; 21(4):193-7. PubMed ID: 12811622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Runx1 transcription factor controls CSF-1-dependent and -independent growth and survival of macrophages.
    Himes SR; Cronau S; Mulford C; Hume DA
    Oncogene; 2005 Aug; 24(34):5278-86. PubMed ID: 16007221
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MYND-less splice variants of AML1-MTG8 (RUNX1-CBFA2T1) are expressed in leukemia with t(8;21).
    Kozu T; Fukuyama T; Yamami T; Akagi K; Kaneko Y
    Genes Chromosomes Cancer; 2005 May; 43(1):45-53. PubMed ID: 15723339
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The 8;21 translocation in leukemogenesis.
    Peterson LF; Zhang DE
    Oncogene; 2004 May; 23(24):4255-62. PubMed ID: 15156181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acceleration of G(1) cooperates with core binding factor beta-smooth muscle myosin heavy chain to induce acute leukemia in mice.
    Yang Y; Wang W; Cleaves R; Zahurak M; Cheng L; Civin CI; Friedman AD
    Cancer Res; 2002 Apr; 62(8):2232-5. PubMed ID: 11956074
    [TBL] [Abstract][Full Text] [Related]  

  • 51. LPXN, a member of the paxillin superfamily, is fused to RUNX1 in an acute myeloid leukemia patient with a t(11;21)(q12;q22) translocation.
    Dai HP; Xue YQ; Zhou JW; Li AP; Wu YF; Pan JL; Wang Y; Zhang J
    Genes Chromosomes Cancer; 2009 Dec; 48(12):1027-36. PubMed ID: 19760607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel RUNX1-PRDM16 fusion transcripts in a patient with acute myeloid leukemia showing t(1;21)(p36;q22).
    Sakai I; Tamura T; Narumi H; Uchida N; Yakushijin Y; Hato T; Fujita S; Yasukawa M
    Genes Chromosomes Cancer; 2005 Nov; 44(3):265-70. PubMed ID: 16015645
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proleukemic RUNX1 and CBFbeta mutations in the pathogenesis of acute leukemia.
    Engel ME; Hiebert SW
    Cancer Treat Res; 2010; 145():127-47. PubMed ID: 20306249
    [TBL] [Abstract][Full Text] [Related]  

  • 54. miR-17 deregulates a core RUNX1-miRNA mechanism of CBF acute myeloid leukemia.
    Fischer J; Rossetti S; Datta A; Eng K; Beghini A; Sacchi N
    Mol Cancer; 2015 Jan; 14():7. PubMed ID: 25612891
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor-1alpha.
    Peng ZG; Zhou MY; Huang Y; Qiu JH; Wang LS; Liao SH; Dong S; Chen GQ
    Oncogene; 2008 Jan; 27(6):839-47. PubMed ID: 17684492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Clinical Relevance of RUNX1 and CBFB Alterations in Acute Myeloid Leukemia and Other Hematological Disorders.
    Metzeler KH; Bloomfield CD
    Adv Exp Med Biol; 2017; 962():175-199. PubMed ID: 28299658
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of Cbfb in hematopoiesis and perturbations resulting from expression of the leukemogenic fusion gene Cbfb-MYH11.
    Kundu M; Chen A; Anderson S; Kirby M; Xu L; Castilla LH; Bodine D; Liu PP
    Blood; 2002 Oct; 100(7):2449-56. PubMed ID: 12239155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. AML1 interconnected pathways of leukemogenesis.
    Michaud J; Scott HS; Escher R
    Cancer Invest; 2003; 21(1):105-36. PubMed ID: 12643014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Zebrafish homolog of the leukemia gene CBFB: its expression during embryogenesis and its relationship to scl and gata-1 in hematopoiesis.
    Blake T; Adya N; Kim CH; Oates AC; Zon L; Chitnis A; Weinstein BM; Liu PP
    Blood; 2000 Dec; 96(13):4178-84. PubMed ID: 11110689
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Marker chromosomes are a significant mechanism of high-level RUNX1 gene amplification in hematologic malignancies.
    Moosavi SA; Sanchez J; Adeyinka A
    Cancer Genet Cytogenet; 2009 Feb; 189(1):24-8. PubMed ID: 19167608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.