These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 1249599)

  • 1. Depolarizing afterpotentials and burst production in molluscan pacemaker neurons.
    Thompson SH; Smith SJ
    J Neurophysiol; 1976 Jan; 39(1):153-61. PubMed ID: 1249599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow depolarizing afterpotentials in neocortical neurons are sodium and calcium dependent.
    Friedman A; Arens J; Heinemann U; Gutnick MJ
    Neurosci Lett; 1992 Jan; 135(1):13-7. PubMed ID: 1542430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of a nonspecific cation conductance by intracellular Ca2+ elevation in bursting pacemaker neurons of Helix pomatia.
    Swandulla D; Lux HD
    J Neurophysiol; 1985 Dec; 54(6):1430-43. PubMed ID: 2418170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of slow, depolarizing responses of cardiac ganglion neurons in the crab, Portunus sanguinolentus.
    Tazaki K; Cooke IM
    J Neurophysiol; 1979 Jul; 42(4):1000-21. PubMed ID: 479918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of long-lasting histaminergic inhibition in a beating pacemaker neuron of Onchidium.
    Gotow T
    Brain Res; 1985 Apr; 332(1):1-14. PubMed ID: 2986759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of the low-threshold T-type calcium current in generating the post-spike depolarizing afterpotential in dentate granule neurons of immature rats.
    Zhang L; Valiante TA; Carlen PL
    J Neurophysiol; 1993 Jul; 70(1):223-31. PubMed ID: 8395576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological basis of feeding behavior in Tritonia diomedea. III. Role of depolarizing afterpotentials.
    Bulloch AG; Willows AO
    J Neurobiol; 1981 Sep; 12(5):515-32. PubMed ID: 7276931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-dependent fast depolarizing afterpotentials in vasopressin neurons in the rat supraoptic nucleus.
    Teruyama R; Armstrong WE
    J Neurophysiol; 2007 Nov; 98(5):2612-21. PubMed ID: 17715195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms underlying burst generation of the pyloric muscle in the mantis shrimp, Squilla oratoria.
    Tazaki K; Chiba C
    J Comp Physiol A; 1991 Dec; 169(6):737-50. PubMed ID: 1795238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional spike backpropagation generates burst discharge in a sensory neuron.
    Lemon N; Turner RW
    J Neurophysiol; 2000 Sep; 84(3):1519-30. PubMed ID: 10980024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and kinetic properties of cholinergic receptors activated by multiaction interneurons in buccal ganglia of Aplysia.
    Gardner D; Kandel ER
    J Neurophysiol; 1977 Mar; 40(2):333-48. PubMed ID: 191573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage- and Ca2+-dependent burst generation in neuroendocrine Dahlgren cells in the teleost Platichthys flesus.
    Brierley MJ; Bauer CS; Lu W; Riccardi D; Balment RJ; McCrohan CR
    J Neuroendocrinol; 2004 Oct; 16(10):832-41. PubMed ID: 15500543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells.
    Liu X; Stan Leung L
    Brain Res; 2004 Oct; 1023(2):185-92. PubMed ID: 15374744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic bases of slow, depolarizing responses of cardiac ganglion neurons in the crab, Portunus sanguinolentus.
    Tazaki K; Cooke IM
    J Neurophysiol; 1979 Jul; 42(4):1022-47. PubMed ID: 479919
    [No Abstract]   [Full Text] [Related]  

  • 15. Hyperpolarizing potentials induced by Ca-mediated K-conductance increase in hamster submandibular ganglion cells.
    Suzuki T; Kusano K
    J Neurobiol; 1978 Sep; 9(5):367-92. PubMed ID: 213535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic basis of different synaptic potentials mediated by an identified dopamine-containing neuron in Planorbis.
    Berry MS; Cottrell GA
    Proc R Soc Lond B Biol Sci; 1979 Jan; 203(1153):427-44. PubMed ID: 34163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of subthreshold response and action potential recorded in layer V neurons from cat sensorimotor cortex in vitro.
    Stafstrom CE; Schwindt PC; Flatman JA; Crill WE
    J Neurophysiol; 1984 Aug; 52(2):244-63. PubMed ID: 6090604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Close relation between TEA responses and Ca-dependent membrane phenomena of four identified leech neurones.
    Kleinhaus AL; Prichard JW
    J Physiol; 1977 Aug; 270(1):181-94. PubMed ID: 915770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium spike and calcium-dependent potassium conductance in mechanosensory neurons of the lamprey.
    Leonard JP; Wickelgren WO
    J Neurophysiol; 1985 Jan; 53(1):171-82. PubMed ID: 2579216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similarities in the actions of potassium and calcium ions on ganglionic afterpotentials.
    Volle RL
    J Pharmacol Exp Ther; 1967 Nov; 158(2):253-63. PubMed ID: 6065148
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.