These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 12495998)
1. Vortex scale of unsteady separation on a pitching airfoil. Fuchiwaki M; Tanaka K Ann N Y Acad Sci; 2002 Oct; 972():61-6. PubMed ID: 12495998 [TBL] [Abstract][Full Text] [Related]
2. Flow Control around the UAS-S45 Pitching Airfoil Using a Dynamically Morphing Leading Edge (DMLE): A Numerical Study. Bashir M; Zonzini N; Botez RM; Ceruti A; Wong T Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36810382 [TBL] [Abstract][Full Text] [Related]
3. An experimental study of trailing edge noise from a pitching airfoil. Zhou T; Sun Y; Fattah R; Zhang X; Huang X J Acoust Soc Am; 2019 Apr; 145(4):2009. PubMed ID: 31046340 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control. Wang C; Tang H Bioinspir Biomim; 2018 May; 13(4):046005. PubMed ID: 29648545 [TBL] [Abstract][Full Text] [Related]
5. Numerical Simulation of the Transient Flow around the Combined Morphing Leading-Edge and Trailing-Edge Airfoil. Bashir M; Negahban MH; Botez RM; Wong T Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392154 [TBL] [Abstract][Full Text] [Related]
6. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000. Levy DE; Seifert A J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771 [TBL] [Abstract][Full Text] [Related]
7. Flow visualization over a thick blunt trailing-edge airfoil with base cavity at low Reynolds numbers using PIV technique. Taherian G; Nili-Ahmadabadi M; Karimi MH; Tavakoli MR J Vis (Tokyo); 2017; 20(4):695-710. PubMed ID: 29026342 [TBL] [Abstract][Full Text] [Related]
8. Control of leading-edge separation on bioinspired airfoil with fluttering coverts. Ma X; Gong X; Tang Z; Jiang N Phys Rev E; 2022 Feb; 105(2-2):025107. PubMed ID: 35291149 [TBL] [Abstract][Full Text] [Related]
9. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil. Wang Y; Zheng X; Hu R; Wang P PLoS One; 2016; 11(9):e0163443. PubMed ID: 27658310 [TBL] [Abstract][Full Text] [Related]
10. Multifidelity kinematic parameter optimization of a flapping airfoil. Zheng H; Xie F; Ji T; Zhu Z; Zheng Y Phys Rev E; 2020 Jan; 101(1-1):013107. PubMed ID: 32069665 [TBL] [Abstract][Full Text] [Related]
11. Comparative Analysis of the Self-Propelled Locomotion of a Pitching Airfoil near the Flat and Wavy Ground. Xin Z; Cai Z; Ren Y; Liu H Biomimetics (Basel); 2022 Dec; 7(4):. PubMed ID: 36546939 [TBL] [Abstract][Full Text] [Related]
12. An experimental study of trailing edge noise from a heaving airfoil. Zhou T; Zhang X; Zhong S J Acoust Soc Am; 2020 Jun; 147(6):4020. PubMed ID: 32611152 [TBL] [Abstract][Full Text] [Related]
13. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles. Zbikowski R Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181 [TBL] [Abstract][Full Text] [Related]
14. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil. Johnston J; Gopalarathnam A Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691 [TBL] [Abstract][Full Text] [Related]
15. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651 [TBL] [Abstract][Full Text] [Related]
16. Hydrodynamic stability of swimming in ostraciid fishes: role of the carapace in the smooth trunkfish Lactophrys triqueter (Teleostei: Ostraciidae). Bartol IK; Gharib M; Weihs D; Webb PW; Hove JR; Gordon MS J Exp Biol; 2003 Feb; 206(Pt 4):725-44. PubMed ID: 12517990 [TBL] [Abstract][Full Text] [Related]
17. Dual leading-edge vortices on flapping wings. Lu Y; Shen GX; Lai GJ J Exp Biol; 2006 Dec; 209(Pt 24):5005-16. PubMed ID: 17142689 [TBL] [Abstract][Full Text] [Related]
18. Numerical investigation of low-noise airfoils inspired by the down coat of owls. Bodling A; Sharma A Bioinspir Biomim; 2018 Dec; 14(1):016013. PubMed ID: 30523914 [TBL] [Abstract][Full Text] [Related]
19. Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations. Zhao M; Cao H; Zhang M; Liao C; Zhou T Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34020442 [TBL] [Abstract][Full Text] [Related]
20. Theoretical study on two-dimensional aerodynamic characteristics of unsteady wings. Azuma A; Okamoto M J Theor Biol; 2005 May; 234(1):67-78. PubMed ID: 15721036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]