BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12496080)

  • 1. Conformational partitioning of the fusion peptide of HIV-1 gp41 and its structural analogs in bilayer membranes.
    Maddox MW; Longo ML
    Biophys J; 2002 Dec; 83(6):3088-96. PubMed ID: 12496080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully hydrophobic HIV gp41 adopts a hemifusion-like conformation in phospholipid bilayers.
    Lee M; Morgan CA; Hong M
    J Biol Chem; 2019 Oct; 294(40):14732-14744. PubMed ID: 31409642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the fusion peptide and membrane-proximal domain in HIV-1 envelope glycoprotein-mediated membrane fusion.
    Dimitrov AS; Rawat SS; Jiang S; Blumenthal R
    Biochemistry; 2003 Dec; 42(48):14150-8. PubMed ID: 14640682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The polar region consecutive to the HIV fusion peptide participates in membrane fusion.
    Peisajovich SG; Epand RF; Pritsker M; Shai Y; Epand RM
    Biochemistry; 2000 Feb; 39(7):1826-33. PubMed ID: 10677233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane interactions of the synthetic N-terminal peptide of HIV-1 gp41 and its structural analogs.
    Mobley PW; Waring AJ; Sherman MA; Gordon LM
    Biochim Biophys Acta; 1999 Apr; 1418(1):1-18. PubMed ID: 10209206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The amino-terminal peptide of HIV-1 glycoprotein 41 interacts with human erythrocyte membranes: peptide conformation, orientation and aggregation.
    Gordon LM; Curtain CC; Zhong YC; Kirkpatrick A; Mobley PW; Waring AJ
    Biochim Biophys Acta; 1992 Aug; 1139(4):257-74. PubMed ID: 1355364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydrophobic internal region of bovine prion protein shares structural and functional properties with HIV type 1 fusion peptide.
    Sáez-Cirión A; Nieva JL; Gallaher WR
    AIDS Res Hum Retroviruses; 2003 Nov; 19(11):969-78. PubMed ID: 14678604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acids can substitute the HIV fusion peptide in lipid merging and fusion: an analogy between viral and palmitoylated eukaryotic fusion proteins.
    Lev N; Shai Y
    J Mol Biol; 2007 Nov; 374(1):220-30. PubMed ID: 17919659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The helix-to-sheet transition of an HIV-1 fusion peptide derivative changes the mechanical properties of lipid bilayer membranes.
    Heller WT; Zolnierczuk PA
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):565-572. PubMed ID: 30550881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of HIV-1 fusion domain-membrane complexes: Insight into the N-terminal gp41 fusion mechanism.
    Promsri S; Ullmann GM; Hannongbua S
    Biophys Chem; 2012; 170():9-16. PubMed ID: 22892124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational mapping of the N-terminal peptide of HIV-1 gp41 in membrane environments using (13)C-enhanced Fourier transform infrared spectroscopy.
    Gordon LM; Mobley PW; Pilpa R; Sherman MA; Waring AJ
    Biochim Biophys Acta; 2002 Feb; 1559(2):96-120. PubMed ID: 11853678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and orientation study of fusion peptide FP23 of gp41 from HIV-1 alone or inserted into various lipid membrane models (mono-, bi- and multibi-layers) by FT-IR spectroscopies and Brewster angle microscopy.
    Castano S; Desbat B
    Biochim Biophys Acta; 2005 Sep; 1715(2):81-95. PubMed ID: 16126160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymorphism and interactions of a viral fusion peptide in a compressed lipid monolayer.
    Schwarz G; Taylor SE
    Biophys J; 1999 Jun; 76(6):3167-75. PubMed ID: 10354441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of membrane activity from mutational analysis of the HIV fusion peptide.
    Torres O; Bong D
    Biochemistry; 2011 Jun; 50(23):5195-207. PubMed ID: 21561063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane structure of the human immunodeficiency virus gp41 fusion peptide by molecular dynamics simulation. II. The glycine mutants.
    Wong TC
    Biochim Biophys Acta; 2003 Jan; 1609(1):45-54. PubMed ID: 12507757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysical investigations of GBV-C E1 peptides as potential inhibitors of HIV-1 fusion peptide.
    Sánchez-Martín MJ; Urbán P; Pujol M; Haro I; Alsina MA; Busquets MA
    Chemphyschem; 2011 Oct; 12(15):2816-22. PubMed ID: 21905195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane structure of the human immunodeficiency virus gp41 fusion domain by molecular dynamics simulation.
    Kamath S; Wong TC
    Biophys J; 2002 Jul; 83(1):135-43. PubMed ID: 12080106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The amino-terminal peptide of HIV-1 gp41 interacts with human serum albumin.
    Gordon LM; Curtain CC; McCloyn V; Kirkpatrick A; Mobley PW; Waring AJ
    AIDS Res Hum Retroviruses; 1993 Nov; 9(11):1145-56. PubMed ID: 8312056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single mutation effects on conformational change and membrane deformation of influenza hemagglutinin fusion peptides.
    Li J; Das P; Zhou R
    J Phys Chem B; 2010 Jul; 114(26):8799-806. PubMed ID: 20552971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane-induced conformational change during the activation of HIV-1 gp41.
    Kliger Y; Peisajovich SG; Blumenthal R; Shai Y
    J Mol Biol; 2000 Aug; 301(4):905-14. PubMed ID: 10966795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.