These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12496088)

  • 21. Mechanical noise enhances signal transmission in the bullfrog sacculus.
    Indresano AA; Frank JE; Middleton P; Jaramillo F
    J Assoc Res Otolaryngol; 2003 Sep; 4(3):363-70. PubMed ID: 14690054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell.
    Howard J; Hudspeth AJ
    Neuron; 1988 May; 1(3):189-99. PubMed ID: 2483095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog.
    Bozovic D; Hudspeth AJ
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):958-63. PubMed ID: 12538849
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of a hair bundle's mechanosensory function by its mechanical load.
    Salvi JD; Ó Maoiléidigh D; Fabella BA; Tobin M; Hudspeth AJ
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):E1000-9. PubMed ID: 25691749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insulin-like growth factor 1 protects vestibular hair cells from aminoglycosides.
    Angunsri N; Taura A; Nakagawa T; Hayashi Y; Kitajiri S; Omi E; Ishikawa K; Ito J
    Neuroreport; 2011 Jan; 22(1):38-43. PubMed ID: 21127443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-state approach to stochastic hair bundle dynamics.
    Clausznitzer D; Lindner B; Jülicher F; Martin P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041901. PubMed ID: 18517650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of the receptor current in bullfrog saccular hair cells.
    Corey DP; Hudspeth AJ
    J Neurosci; 1983 May; 3(5):962-76. PubMed ID: 6601694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mechanical model of stereocilia that demonstrates a shift in the high-sensitivity region due to the interplay of a negative stiffness and an adaptation mechanism.
    Lee C; Park S
    Bioinspir Biomim; 2012 Dec; 7(4):046013. PubMed ID: 23093086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gating properties of the mechano-electrical transducer channel in the dissociated vestibular hair cell of the chick.
    Ohmori H
    J Physiol; 1987 Jun; 387():589-609. PubMed ID: 3656183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanoelectrical transduction by hair cells of the bullfrog's sacculus.
    Hudspeth AJ
    Prog Brain Res; 1989; 80():129-35; discussion 127-8. PubMed ID: 2699361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Release and elementary mechanisms of nitric oxide in hair cells.
    Lv P; Rodriguez-Contreras A; Kim HJ; Zhu J; Wei D; Choong-Ryoul S; Eastwood E; Mu K; Levic S; Song H; Yevgeniy PY; Smith PJ; Yamoah EN
    J Neurophysiol; 2010 May; 103(5):2494-505. PubMed ID: 20220083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amplitude death of coupled hair bundles with stochastic channel noise.
    Kim KJ; Ahn KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042703. PubMed ID: 24827274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transduction and adaptation in sensory hair cells of the mammalian vestibular system.
    Colclasure JC; Holt JR
    Gravit Space Biol Bull; 2003 Jun; 16(2):61-70. PubMed ID: 12959133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A virtual hair cell, II: evaluation of mechanoelectric transduction parameters.
    Nam JH; Cotton JR; Grant W
    Biophys J; 2007 Mar; 92(6):1929-37. PubMed ID: 17208974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological Preparation of Hair Cells from the Sacculus of the American Bullfrog (Rana catesbeiana).
    Azimzadeh JB; Salvi JD
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effectiveness, active energy produced by molecular motors, and nonlinear capacitance of the cochlear outer hair cell.
    Spector AA
    J Biomech Eng; 2005 Jun; 127(3):391-9. PubMed ID: 16060346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An operating principle of the turtle utricle to detect wide dynamic range.
    Nam JH
    Hear Res; 2018 Mar; 360():31-39. PubMed ID: 29037815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of active hair bundle motion in auditory hair cells.
    Ricci AJ; Crawford AC; Fettiplace R
    J Neurosci; 2002 Jan; 22(1):44-52. PubMed ID: 11756487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myosin I and adaptation of mechanical transduction by the inner ear.
    Gillespie PG
    Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1945-51. PubMed ID: 15647170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stochastic resonance in the mechanoelectrical transduction of hair cells.
    Lindner JF; Bennett M; Wiesenfeld K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051911. PubMed ID: 16383649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.