These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
678 related articles for article (PubMed ID: 12496107)
1. Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition. Niu SL; Litman BJ Biophys J; 2002 Dec; 83(6):3408-15. PubMed ID: 12496107 [TBL] [Abstract][Full Text] [Related]
2. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Huster D; Arnold K; Gawrisch K Biochemistry; 1998 Dec; 37(49):17299-308. PubMed ID: 9860844 [TBL] [Abstract][Full Text] [Related]
3. Lipid rafts reconstituted in model membranes. Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302 [TBL] [Abstract][Full Text] [Related]
4. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes. Pankov R; Markovska T; Antonov P; Ivanova L; Momchilova A Gen Physiol Biophys; 2006 Sep; 25(3):313-24. PubMed ID: 17197729 [TBL] [Abstract][Full Text] [Related]
5. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol. Slater SJ; Ho C; Taddeo FJ; Kelly MB; Stubbs CD Biochemistry; 1993 Apr; 32(14):3714-21. PubMed ID: 8466911 [TBL] [Abstract][Full Text] [Related]
6. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms. Bakht O; Pathak P; London E Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350 [TBL] [Abstract][Full Text] [Related]
7. Exposure of phosphatidylinositol transfer proteins to sphingomyelin-cholesterol membranes suggests transient but productive interactions with raft-like, liquid-ordered domains. Miller EC; Helmkamp GM Biochemistry; 2003 Nov; 42(45):13250-9. PubMed ID: 14609336 [TBL] [Abstract][Full Text] [Related]
8. Surfactins modulate the lateral organization of fluorescent membrane polar lipids: a new tool to study drug:membrane interaction and assessment of the role of cholesterol and drug acyl chain length. D'Auria L; Deleu M; Dufour S; Mingeot-Leclercq MP; Tyteca D Biochim Biophys Acta; 2013 Sep; 1828(9):2064-73. PubMed ID: 23685123 [TBL] [Abstract][Full Text] [Related]
9. Strength of Ca(2+) binding to retinal lipid membranes: consequences for lipid organization. Huster D; Arnold K; Gawrisch K Biophys J; 2000 Jun; 78(6):3011-8. PubMed ID: 10827979 [TBL] [Abstract][Full Text] [Related]
10. Partitioning of pyrene-labeled phospho- and sphingolipids between ordered and disordered bilayer domains. Koivusalo M; Alvesalo J; Virtanen JA; Somerharju P Biophys J; 2004 Feb; 86(2):923-35. PubMed ID: 14747328 [TBL] [Abstract][Full Text] [Related]
11. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR. Aussenac F; Tavares M; Dufourc EJ Biochemistry; 2003 Feb; 42(6):1383-90. PubMed ID: 12578350 [TBL] [Abstract][Full Text] [Related]
12. Partitioning of liquid-ordered/liquid-disordered membrane microdomains induced by the fluidifying effect of 2-hydroxylated fatty acid derivatives. Ibarguren M; López DJ; Encinar JA; González-Ros JM; Busquets X; Escribá PV Biochim Biophys Acta; 2013 Nov; 1828(11):2553-63. PubMed ID: 23792066 [TBL] [Abstract][Full Text] [Related]
13. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol. Adams M; Wang E; Zhuang X; Klauda JB Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746 [TBL] [Abstract][Full Text] [Related]
14. Effects of lipid headgroup and packing stress on poly(ethylene glycol)-induced phospholipid vesicle aggregation and fusion. Yang Q; Guo Y; Li L; Hui SW Biophys J; 1997 Jul; 73(1):277-82. PubMed ID: 9199792 [TBL] [Abstract][Full Text] [Related]
15. Transbilayer movement of phospholipids at the main phase transition of lipid membranes: implications for rapid flip-flop in biological membranes. John K; Schreiber S; Kubelt J; Herrmann A; Müller P Biophys J; 2002 Dec; 83(6):3315-23. PubMed ID: 12496099 [TBL] [Abstract][Full Text] [Related]
16. Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. Ayuyan AG; Cohen FS Biophys J; 2006 Sep; 91(6):2172-83. PubMed ID: 16815906 [TBL] [Abstract][Full Text] [Related]
17. Influence of lipid composition on physical properties and peg-mediated fusion of curved and uncurved model membrane vesicles: "nature's own" fusogenic lipid bilayer. Haque ME; McIntosh TJ; Lentz BR Biochemistry; 2001 Apr; 40(14):4340-8. PubMed ID: 11284690 [TBL] [Abstract][Full Text] [Related]
18. Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers. Ali MR; Cheng KH; Huang J Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5372-7. PubMed ID: 17372226 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells. Gidwani A; Holowka D; Baird B Biochemistry; 2001 Oct; 40(41):12422-9. PubMed ID: 11591163 [TBL] [Abstract][Full Text] [Related]
20. Phospholipid acyl chain rotational dynamics are independent of headgroup structure in unilamellar vesicles containing binary mixtures of dioleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine. Hunter GW; Squier TC Biochim Biophys Acta; 1998 Dec; 1415(1):63-76. PubMed ID: 9858687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]