These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 12496116)
1. Resonance energy transfer in a calcium concentration-dependent cameleon protein. Habuchi S; Cotlet M; Hofkens J; Dirix G; Michiels J; Vanderleyden J; Subramaniam V; De Schryver FC Biophys J; 2002 Dec; 83(6):3499-506. PubMed ID: 12496116 [TBL] [Abstract][Full Text] [Related]
2. Disentangling picosecond events that complicate the quantitative use of the calcium sensor YC3.60. Laptenok SP; van Stokkum IH; Borst JW; van Oort B; Visser AJ; van Amerongen H J Phys Chem B; 2012 Mar; 116(9):3013-20. PubMed ID: 22320307 [TBL] [Abstract][Full Text] [Related]
3. Receptor-regulated dynamic interaction between endothelial nitric oxide synthase and calmodulin revealed by fluorescence resonance energy transfer in living cells. Jobin CM; Chen H; Lin AJ; Yacono PW; Igarashi J; Michel T; Golan DE Biochemistry; 2003 Oct; 42(40):11716-25. PubMed ID: 14529282 [TBL] [Abstract][Full Text] [Related]
4. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Lu H; Schöps O; Woggon U; Niemeyer CM J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889 [TBL] [Abstract][Full Text] [Related]
5. Diverse Fluorescence Resonance Energy Transfer Processes Originating from the Conformational Heterogeneity of the Calcium Indicator Yellow Cameleon YC3.60. Tsubota H; Kinoshita Y; Shigeno M; Hosoi H J Phys Chem B; 2023 May; 127(17):3839-3850. PubMed ID: 37089079 [TBL] [Abstract][Full Text] [Related]
6. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
7. FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Truong K; Sawano A; Mizuno H; Hama H; Tong KI; Mal TK; Miyawaki A; Ikura M Nat Struct Biol; 2001 Dec; 8(12):1069-73. PubMed ID: 11702071 [TBL] [Abstract][Full Text] [Related]
8. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Kremers GJ; Goedhart J; van Munster EB; Gadella TW Biochemistry; 2006 May; 45(21):6570-80. PubMed ID: 16716067 [TBL] [Abstract][Full Text] [Related]
9. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
10. Ultrafast fluorescence depolarisation in the yellow fluorescent protein due to its dimerisation. Jung G; Ma Y; Prall BS; Fleming GR Chemphyschem; 2005 Aug; 6(8):1628-32. PubMed ID: 16025560 [TBL] [Abstract][Full Text] [Related]
11. Isolation of FRET-positive cells using single 408-nm laser flow cytometry. van Wageningen S; Pennings AH; van der Reijden BA; Boezeman JB; de Lange F; Jansen JH Cytometry A; 2006 Apr; 69(4):291-8. PubMed ID: 16498686 [TBL] [Abstract][Full Text] [Related]
12. Concatenation of cyan and yellow fluorescent proteins for efficient resonance energy transfer. Shimozono S; Hosoi H; Mizuno H; Fukano T; Tahara T; Miyawaki A Biochemistry; 2006 May; 45(20):6267-71. PubMed ID: 16700538 [TBL] [Abstract][Full Text] [Related]
13. Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer. Mizuno H; Sawano A; Eli P; Hama H; Miyawaki A Biochemistry; 2001 Feb; 40(8):2502-10. PubMed ID: 11327872 [TBL] [Abstract][Full Text] [Related]
14. Enhanced dynamic range in a genetically encoded Ca2+ sensor. Liu S; He J; Jin H; Yang F; Lu J; Yang J Biochem Biophys Res Commun; 2011 Aug; 412(1):155-9. PubMed ID: 21806972 [TBL] [Abstract][Full Text] [Related]
16. Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein. Ma YZ; Miller RA; Fleming GR; Francis MB J Phys Chem B; 2008 Jun; 112(22):6887-92. PubMed ID: 18471010 [TBL] [Abstract][Full Text] [Related]
17. Revealing the excited-state dynamics of the fluorescent protein Dendra2. Fron E; Van der Auweraer M; Moeyaert B; Michiels J; Mizuno H; Hofkens J; Adam V J Phys Chem B; 2013 Feb; 117(8):2300-13. PubMed ID: 23356883 [TBL] [Abstract][Full Text] [Related]
18. The interaction between human PEX3 and PEX19 characterized by fluorescence resonance energy transfer (FRET) analysis. Muntau AC; Roscher AA; Kunau WH; Dodt G Eur J Cell Biol; 2003 Jul; 82(7):333-42. PubMed ID: 12924628 [TBL] [Abstract][Full Text] [Related]
19. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer. Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794 [TBL] [Abstract][Full Text] [Related]
20. Determination of photophysical parameters of red fluorescent protein mRFP1 under ultraviolet excitation by methods of laser fluorimetry. Banishev AA; Shirshin EA; Fadeev VV Appl Opt; 2010 Dec; 49(34):6637-44. PubMed ID: 21124542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]