BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12496122)

  • 1. Labeling proteins via hole burning of their aromatic amino acids: pressure tuning spectroscopy of BPTI.
    Stübner M; Hecht C; Friedrich J
    Biophys J; 2002 Dec; 83(6):3553-7. PubMed ID: 12496122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of spectral diffusion in ribonuclease by photolabeling of intrinsic aromatic amino acids.
    Somoza MM; Ponkratov VV; Friedrich J
    J Chem Phys; 2006 Nov; 125(19):194713. PubMed ID: 17129156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hole burning spectroscopy of ribonuclease A.
    Schnell C; Scharnagl C; Friedrich J
    Phys Chem Chem Phys; 2006 Mar; 8(11):1315-20. PubMed ID: 16633612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). I. 1H NMR studies.
    Wagner G; DeMarco A; Wüthrich K
    Biophys Struct Mech; 1976 Aug; 2(2):139-58. PubMed ID: 9165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-tuning the conformation of bovine pancreatic trypsin inhibitor studied by Fourier-transform infrared spectroscopy.
    Goossens K; Smeller L; Frank J; Heremans K
    Eur J Biochem; 1996 Feb; 236(1):254-62. PubMed ID: 8617273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of protein aggregation kinetics using short amino acid peptide tags.
    Khan MA; Islam MM; Kuroda Y
    Biochim Biophys Acta; 2013 Oct; 1834(10):2107-15. PubMed ID: 23811470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local compressibilities in insulin as determined from pressure tuning hole burning experiments and MD simulations.
    Schnell C; Reif M; Scharnagl C; Friedrich J
    Phys Chem Chem Phys; 2005 May; 7(10):2217-24. PubMed ID: 19791416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aprotinin-like isoinhibitors in bovine organs.
    Fioretti E; Angeletti M; Fiorucci L; Barra D; Bossa F; Ascoli F
    Biol Chem Hoppe Seyler; 1988 May; 369 Suppl():37-42. PubMed ID: 2462435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosine, phenylalanine, and disulfide contributions to the circular dichroism of proteins: circular dichroism spectra of wild-type and mutant bovine pancreatic trypsin inhibitor.
    Sreerama N; Manning MC; Powers ME; Zhang JX; Goldenberg DP; Woody RW
    Biochemistry; 1999 Aug; 38(33):10814-22. PubMed ID: 10451378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced protein flexibility caused by a destabilizing amino acid replacement in BPTI.
    Beeser SA; Goldenberg DP; Oas TG
    J Mol Biol; 1997 May; 269(1):154-64. PubMed ID: 9193007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of backbone dynamics in native BPTI: cooperative influence of the 14-38 disulfide and the Tyr35 side-chain.
    Beeser SA; Oas TG; Goldenberg DP
    J Mol Biol; 1998 Dec; 284(5):1581-96. PubMed ID: 9878372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthetically directed fractional 13C labeling facilitates identification of Phe and Tyr aromatic signals in proteins.
    Jacob J; Louis JM; Nesheiwat I; Torchia DA
    J Biomol NMR; 2002 Nov; 24(3):231-5. PubMed ID: 12522310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of the contribution of aromatic side chains to the circular dichroism of basic bovine pancreatic trypsin inhibitor.
    Manning MC; Woody RW
    Biochemistry; 1989 Oct; 28(21):8609-13. PubMed ID: 2481497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of single-disulfide variants of bovine pancreatic trypsin inhibitor (BPTI) as probed by their binding to bovine beta-trypsin.
    Krokoszynska I; Dadlez M; Otlewski J
    J Mol Biol; 1998 Jan; 275(3):503-13. PubMed ID: 9466927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced BPTI is collapsed. A pulsed field gradient NMR study of unfolded and partially folded bovine pancreatic trypsin inhibitor.
    Pan H; Barany G; Woodward C
    Protein Sci; 1997 Sep; 6(9):1985-92. PubMed ID: 9300498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Modification of basic pancreatic trypsin inhibitor by fatty acid derivatives].
    Tiurina OP; Malykh EV; Balabushevich NG; Larionova NI
    Bioorg Khim; 1998 May; 24(5):341-5. PubMed ID: 9661787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of aprotinin by titration with bovine trypsin with end-point detection by high-performance liquid chromatography.
    Raspi G; Lo Moro A; Spinetti M; Molinari M
    Analyst; 1989 Sep; 114(9):1017-9. PubMed ID: 2481988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of a hydrophobic cluster in denatured bovine pancreatic trypsin inhibitor.
    Lumb KJ; Kim PS
    J Mol Biol; 1994 Feb; 236(2):412-20. PubMed ID: 7508987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependent 2nd derivative absorbance spectroscopy of aromatic amino acids as a probe of protein dynamics.
    Esfandiary R; Hunjan JS; Lushington GH; Joshi SB; Middaugh CR
    Protein Sci; 2009 Dec; 18(12):2603-14. PubMed ID: 19827094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation of native, reduced and [5-55]Ala bovine pancreatic trypsin inhibitor in the gas phase.
    Nesatiy V; Chen YL; Collings BA; Douglas DJ
    Rapid Commun Mass Spectrom; 1998; 12(1):40-4. PubMed ID: 9450353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.