These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12496134)

  • 1. Energy of hydrogen bonds probed by the adhesion of functionalized lipid layers.
    Tareste D; Pincet F; Perez E; Rickling S; Mioskowski C; Lebeau L
    Biophys J; 2002 Dec; 83(6):3675-81. PubMed ID: 12496134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of AFM and SFA measurements concerning the stability of supported lipid bilayers.
    Benz M; Gutsmann T; Chen N; Tadmor R; Israelachvili J
    Biophys J; 2004 Feb; 86(2):870-9. PubMed ID: 14747322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic forces and hydrogen bonds in the adhesion between retinoid-coated surfaces.
    Tareste D; Pincet F; Lebeau L; Perez E
    Langmuir; 2007 Mar; 23(6):3225-9. PubMed ID: 17266339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct imaging of individual intrinsic hydration layers on lipid bilayers at Angstrom resolution.
    Fukuma T; Higgins MJ; Jarvis SP
    Biophys J; 2007 May; 92(10):3603-9. PubMed ID: 17325013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scrutiny of the failure of lipid membranes as a function of headgroups, chain length, and lamellarity measured by scanning force microscopy.
    Künneke S; Krüger D; Janshoff A
    Biophys J; 2004 Mar; 86(3):1545-53. PubMed ID: 14990481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation study of the interaction of trehalose with lipid membranes.
    Villarreal MA; Díaz SB; Disalvo EA; Montich GG
    Langmuir; 2004 Aug; 20(18):7844-51. PubMed ID: 15323539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study.
    Mombelli E; Morris R; Taylor W; Fraternali F
    Biophys J; 2003 Mar; 84(3):1507-17. PubMed ID: 12609857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid-Cellulose Interactions: Insight from Atomistic Computer Simulations for Understanding the Impact of Cellulose-Based Materials on Plasma Membranes.
    Gurtovenko AA; Mukhamadiarov EI; Kostritskii AY; Karttunen M
    J Phys Chem B; 2018 Nov; 122(43):9973-9981. PubMed ID: 30295483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermolecular forces in spread phospholipid monolayers at oil/water interfaces.
    Mingins J; Pethica BA
    Langmuir; 2004 Aug; 20(18):7493-8. PubMed ID: 15323493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: a theoretical analysis.
    Norouzi D; Müller MM; Deserno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061914. PubMed ID: 17280103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability.
    Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous swelling in phospholipid bilayers is not coupled to the formation of a ripple phase.
    Mason PC; Nagle JF; Epand RM; Katsaras J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):030902. PubMed ID: 11308623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of water-mediated adhesion between phospholipid bilayer and solid support functionalized with self-assembled monolayers.
    Pertsin A; Grunze M
    Biointerphases; 2012 Dec; 7(1-4):57. PubMed ID: 22926496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stalk phase formation: effects of dehydration and saddle splay modulus.
    Kozlovsky Y; Efrat A; Siegel DP; Kozlov MM
    Biophys J; 2004 Oct; 87(4):2508-21. PubMed ID: 15454446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase transitions in supported lipid bilayers studied by AFM.
    Alessandrini A; Facci P
    Soft Matter; 2014 Oct; 10(37):7145-64. PubMed ID: 25090108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and stability of phospholipid bilayers by atomic force microscopy.
    Hui SW; Viswanathan R; Zasadzinski JA; Israelachvili JN
    Biophys J; 1995 Jan; 68(1):171-8. PubMed ID: 7711239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous solutions at the interface with phospholipid bilayers.
    Berkowitz ML; Vácha R
    Acc Chem Res; 2012 Jan; 45(1):74-82. PubMed ID: 21770470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interactions between phosphatidylglycerol and phosphatidylethanolamines in model bacterial membranes: the effect of the acyl chain length and saturation.
    Wydro P; Witkowska K
    Colloids Surf B Biointerfaces; 2009 Aug; 72(1):32-9. PubMed ID: 19380216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups.
    Kuhl TL; Leckband DE; Lasic DD; Israelachvili JN
    Biophys J; 1994 May; 66(5):1479-88. PubMed ID: 8061197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.